cose da un punto di vista extraterrestre
107 posts
ON THIS DAY: Titan, moon of Saturn, observed on November 30, 2014 by the Cassini space probe.
(NASA)
Il pianeta nano Plutone
Google Maps ha aggiunto al suo atlante virtuale nuovi mondi da esplorare virtualmente. I pianeti Mercurio e Venere, il pianeta nano Ceres, nove lune di Saturno e Giove e infine Plutone si possono visitare accedendo a Google Planets. La prima tappa è la Stazione spaziale internazionale, per poi fare un tour attraverso gli oggetti più interessanti del Sistema solare
The art of Chesley Bonestell (1888-1986)
TODAY IN HISTORY: On October 18, 1989, the Galileo space probe launched from Cape Canaveral, Florida aboard the Space Shuttle Atlantis, heading out on a decade-plus mission to explore Jupiter and its neighbors. This early ‘80s NASA simulation footage shows how the spacecraft would eventually release a probe for a one-way trip into the turbulent Jovian atmosphere.
ON THIS DAY: NASA techs assist Gus Grissom during suiting operations at Kennedy Space Center, October 18, 1966.
Voyager 1 color-enhanced image of Saturn taken on October 18, 1980, 25 days before closest approach.
Oggi 4 ottobre 2017, l'esplorazione spaziale celebra i suoi 60esimo anniversario con il lancio dello Sputnik1, il primo satellite artificiale. L'Unione Sovietica, nel 1957, non lanciò semplicemente un razzo ma una vera e propria sfida mondiale alla rivale U.S.A., dando inizio alla "Space Race", ovvero la corsa allo spazio. Quando ci viene raccontato dei primi lanci, non vengono mai citati i nove secoli di preparazione a questi eventi (sembra quasi che i Russi si siano svegliati un giorno e abbiano provato a lanciare qualcosa con successo!). Per capire quanto fosse enorme la necessità di andare oltre ogni confine, dobbiamo fare un salto indietro di qualche centinaio di anni! Possiamo ad esempio partire dall'XI secolo in Cina, dove una combinazione di zolfo, carbone e nitrato di potassio formano la polvere da sparo, il primo vero combustibile per i primi razzi bellici. Circa 500 anni dopo, in India, vengono migliorati i materiali di costruzione dei razzi, che saranno rivestiti di ferro, per una migliore stabilità. Nel marzo del 1926, Robert Goddard, considerato il pioniere della missilistica moderni, lancia il primo razzo alimentato con combustibile liquido, e tre anni dopo, nel luglio del 1929, lanciò un razzo attrezzato con i primi strumenti "scientifici", un barometro e una camera. Negli anni '40, verso la fine della seconda guerra mondiale, furono testati dalla Germania i primi missili balistici V-2, mentre l'America superò la barriera del suono con il Bell X-1. Queste sono solo due delle diverse sperimentazioni di successo di quegli anni, che portarono alla "corsa allo spazio" che raggiunse il suo apice con il successo dell'Apollo 11, che portò l'uomo sulla luna. Sessant'anni di trionfi, tragedie, investimenti e scoperte grazie ai quali, nel prossimo decennio, potremmo spingerci fisicamente su un altro pianeta!
40 YEARS AGO TODAY: The surface of Mars, as seen by NASA’s Viking 2 lander, September 25, 1977.
The first photo of the surface of Mars, captured by NASA’s Viking 1 lander on July 20, 1976.
1981 NASA diagram gives a cutaway view inside a space shuttle.
Image of Titan taken by the Cassini spacecraft
NASA/JPL-Caltech/SSI/Kevin M. Gill
It’s Friday, Sept. 15 and our Cassini mission has officially come to a spectacular end. The final signal from the spacecraft was received here on Earth at 7:55 a.m. EDT after a fateful plunge into Saturn’s atmosphere.
After losing contact with Earth, the spacecraft burned up like a meteor, becoming part of the planet itself.
Although bittersweet, Cassini’s triumphant end is the culmination of a nearly 20-year mission that overflowed with discoveries.
Mission Team and Data
Now that the spacecraft is gone, most of the team’s engineers are migrating to other planetary missions, where they will continue to contribute to the work we’re doing to explore our solar system and beyond.
Mission scientists will keep working for the coming years to ensure that we fully understand all of the data acquired during the mission’s Grand Finale. They will carefully calibrate and study all of this data so that it can be entered into the Planetary Data System. From there, it will be accessible to future scientists for years to come.
Even beyond that, the science data will continue to be worked on for decades, possibly more, depending on the research grants that are acquired.
Other team members, some who have spent most of their career working on the Cassini mission, will use this as an opportunity to retire.
Future Missions
In revealing that Enceladus has essentially all the ingredients needed for life, the mission energized a pivot to the exploration of “ocean worlds” that has been sweeping planetary science over the past couple of decades.
Jupiter’s moon Europa has been a prime target for future exploration, and many lessons during Cassini’s mission are being applied in planning our Europa Clipper mission, planned for launch in the 2020s.
The mission will orbit the giant planet, Jupiter, using gravitational assists from large moons to maneuver the spacecraft into repeated close encounters, much as Cassini has used the gravity of Titan to continually shape the spacecraft’s course.
In addition, many engineers and scientists from Cassini are serving on the new Europa Clipper mission and helping to shape its science investigations. For example, several members of the Cassini Ion and Neutral Mass Spectrometer team are developing an extremely sensitive, next-generation version of their instrument for flight on Europa Clipper. What Cassini has learned about flying through the plume of material spraying from Enceladus will be invaluable to Europa Clipper, should plume activity be confirmed on Europa.
In the decades following Cassini, scientists hope to return to the Saturn system to follow up on the mission’s many discoveries. Mission concepts under consideration include robotic explorers to drift on the methane seas of Titan and fly through the Enceladus plume to collect and analyze samples for signs of biology.
Atmospheric probes to all four of the outer planets have long been a priority for the science community, and the most recent recommendations from a group of planetary scientists shows interest in sending such a mission to Saturn. By directly sampling Saturn’s upper atmosphere during its last orbits and final plunge, Cassini is laying the groundwork for an potential Saturn atmospheric probe.
A variety of potential mission concepts are discussed in a recently completed study — including orbiters, flybys and probes that would dive into Uranus’ atmosphere to study its composition. Future missions to the ice giants might explore those worlds using an approach similar to Cassini’s mission.
Learn more about the Cassini mission and its Grand Finale HERE.
Follow the mission on Facebook and Twitter for the latest updates.
Make sure to follow us on Tumblr for your regular dose of space: http://nasa.tumblr.com.
The Flash Spectrum of the Sun [2048 × 1152]
NASA’s Dawn spacecraft obtained this image with its framing camera of asteroid Vesta on August 11, 2011. The image has a resolution of about 260 meters per pixel. [1024 x 1024]
astronomers
Bartholomeus Anglicus, ‘Livre des propriétés des choses’ (‘De proprietatibus rerum’, French translation of Jean Corbechon), Bruges ca. 1470
BnF, Français 134, fol. 169r
constellation Cetus
Sufi Latinus (Latin translation of ‘Kitāb al-kawākib al-thābita’ of 'Abd al-Rahmān al-Ṣūfī), Bologna 1250-1275
BnF, Arsenal 1036, fol. 34v
ISS passes over Hurricane Irma
SDO Sees Solar Eclipse – “Image of the Moon transiting across the Sun, taken by SDO [Solar Dynamics Observatory] in 171 angstrom extreme ultraviolet light on August 21, 2017.” Photo credit: NASA/SDO [4096 x 4096]
Anelli di Saturno, il grande Titano e Encelado coi suoi geyser di ghiaccio. Un altro grande regalo della Cassini, che sta per concludere la sua missione.
In July 1967, astronomers at the Cavendish Laboratory in Cambridge, observed an unidentified radio signal from interstellar space, which flashed periodically every 1.33730 seconds. This object flashed with such regularity that it was accurate enough to be used as a clock and only be off by one part in a hundred million.
It was eventually determined that this was the first discovery of a pulsar, CP-1919. This is an object that has about the same mass as the Sun, but is the size of the San Francisco Bay at its widest (~20 kilometers) that is rotating so fast that its emitting a beam of light towards Earth like a strobing light house! Pulsars are neutron stars that are formed from the remnants of a massive star when it experiences stellar death.
A hand drawn graph plotted in the style of a waterfall plot, in the Cambridge Encyclopedia of Astronomy, later became renown for its use on the cover of the album “Unknown Pleasures” by 1970s English band Joy Division.
Some even managed to point out the resemblance of this plot to some other waterfall plot gifs.
Also, two days ago today was Joy Divisions singer’s, Ian Curtis, birthday!
Mathematica code:
R[n_] := (SeedRandom[n]; RandomReal[]) ListAnimate[ Table[ Show[ Table[ Plot[ 80 - m + .2*Sin[2 Pi*R[6*m] + Sum[4*Sin[2 Pi*R[4*m] + t + R[2 n*m]*2 Pi]* Exp[-(.3*x + 30 - 1*100*R[2 n*m])^2/20], {n, 1, 30, 1}]] + Sum[3(1 + R[3*n*m])*Abs[Sin[t + R[n*m]*2 Pi]]* Exp[-(x - 1*100*R[n*m])^2/20], {n, 1, 4, 1}], {x, -50, 150}, PlotStyle -> Directive[White, Thick], PlotRange -> {{-50, 150}, {0, 85}}, Background -> Black, Filling -> Axis, FillingStyle -> Black, Axes -> False, AspectRatio -> Full, ImageSize -> {500, 630}], {m, 1, 80, 1}]], {t, 0, 6.3*18/19, 6.3/19}], AnimationRunning -> False]
Early astronomers faced an obstacle: their technology. These great minds only had access to telescopes that revealed celestial bodies shining in visible light. Later, with the development of new detectors, scientists opened their eyes to other types of light like radio waves and X-rays. They realized cosmic objects look very different when viewed in these additional wavelengths. Pulsars — rapidly spinning stellar corpses that appear to pulse at us — are a perfect example.
The first pulsar was observed 50 years ago on August 6, 1967, using radio waves, but since then we have studied them in nearly all wavelengths of light, including X-rays and gamma rays.
Most pulsars form when a star — between 8 and 20 times the mass of our sun — runs out of fuel and its core collapses into a super dense and compact object: a neutron star.
These neutron stars are about the size of a city and can rotate slowly or quite quickly, spinning anywhere from once every few hours to hundreds of times per second. As they whirl, they emit beams of light that appear to blink at us from space.
One day five decades ago, a graduate student at the University of Cambridge, England, named Jocelyn Bell was poring over the data from her radio telescope - 120 meters of paper recordings.
Image Credit: Sumit Sijher
She noticed some unusual markings, which she called “scruff,” indicating a mysterious object (simulated above) that flashed without fail every 1.33730 seconds. This was the very first pulsar discovered, known today as PSR B1919+21.
Before long, we realized pulsars were far more complicated than first meets the eye — they produce many kinds of light, not only radio waves. Take our galaxy’s Crab Nebula, just 6,500 light years away and somewhat of a local celebrity. It formed after a supernova explosion, which crushed the parent star’s core into a neutron star.
The resulting pulsar, nestled inside the nebula that resulted from the supernova explosion, is among the most well-studied objects in our cosmos. It’s pictured above in X-ray light, but it shines across almost the entire electromagnetic spectrum, from radio waves to gamma rays.
Speaking of gamma rays, in 2015 our Fermi Gamma-ray Space Telescope discovered the first pulsar beyond our own galaxy capable of producing such high-energy emissions.
Located in the Tarantula Nebula 163,000 light-years away, PSR J0540-6919 gleams nearly 20 times brighter in gamma-rays than the pulsar embedded in the Crab Nebula.
No two pulsars are exactly alike, and in 2013 an especially fast-spinning one had an identity crisis. A fleet of orbiting X-ray telescopes, including our Swift and Chandra observatories, caught IGR J18245-2452 as it alternated between generating X-rays and radio waves.
Scientists suspect these radical changes could be due to the rise and fall of gas streaming onto the pulsar from its companion star.
This just goes to show that pulsars are easily influenced by their surroundings. That same year, our Fermi Gamma Ray Space Telescope uncovered another pulsar, PSR J1023+0038, in the act of a major transformation — also under the influence of its nearby companion star.
The radio beacon disappeared and the pulsar brightened fivefold in gamma rays, as if someone had flipped a switch to increase the energy of the system.
Our Neutron star Interior Composition Explorer (NICER) mission, launched this past June, will study pulsars like those above using X-ray measurements.
With NICER’s help, scientists will be able to gaze even deeper into the cores of these dense and mysterious entities.
For more information about NICER, visit https://www.nasa.gov/nicer
Make sure to follow us on Tumblr for your regular dose of space: http://nasa.tumblr.com
We’re studying a new method of water recycling and carbon dioxide removal that relies on specific geometric shapes and fluid dynamics, rather than complex machinery, in an effort to help build better life support systems for spacecraft. The research could also teach us more about the water processing approaches we take on Earth. Here, NASA astronaut Jack Fischer, is working with the Capillary Structures for Exploration Life Support (Capillary Structures) investigation capillary sorbent hardware that is made up of 3D printed contractors that are supported by tubing, valves and a pump.
Learn more about how this highly interactive investigation works, and what we could learn from the results HERE.
Make sure to follow us on Tumblr for your regular dose of space: http://nasa.tumblr.com
Today, we’re celebrating the Red Planet! Since our first close-up picture of Mars in 1965, spacecraft voyages to the Red Planet have revealed a world strangely familiar, yet different enough to challenge our perceptions of what makes a planet work.
You’d think Mars would be easier to understand. Like Earth, Mars has polar ice caps and clouds in its atmosphere, seasonal weather patterns, volcanoes, canyons and other recognizable features. However, conditions on Mars vary wildly from what we know on our own planet.
Viking Landers
Our Viking Project found a place in history when it became the first U.S. mission to land a spacecraft safely on the surface of Mars and return images of the surface. Two identical spacecraft, each consisting of a lander and an orbiter, were built. Each orbiter-lander pair flew together and entered Mars orbit; the landers then separated and descended to the planet’s surface.
Besides taking photographs and collecting other science data, the two landers conducted three biology experiments designed to look for possible signs of life.
Pathfinder Rover
In 1997, Pathfinder was the first-ever robotic rover to land on the surface of Mars. It was designed as a technology demonstration of a new way to deliver an instrumented lander to the surface of a planet. Mars Pathfinder used an innovative method of directly entering the Martian atmosphere, assisted by a parachute to slow its descent and a giant system of airbags to cushion the impact.
Pathfinder not only accomplished its goal but also returned an unprecedented amount of data and outlived its primary design life.
Spirit and Opportunity
In January 2004, two robotic geologists named Spirit and Opportunity landed on opposite sides of the Red Planet. With far greater mobility than the 1997 Mars Pathfinder rover, these robotic explorers have trekked for miles across the Martian surface, conducting field geology and making atmospheric observations. Carrying identical, sophisticated sets of science instruments, both rovers have found evidence of ancient Martian environments where intermittently wet and habitable conditions existed.
Both missions exceeded their planned 90-day mission lifetimes by many years. Spirit lasted 20 times longer than its original design until its final communication to Earth on March 22, 2010. Opportunity continues to operate more than a decade after launch.
Mars Reconnaissance Orbiter
Our Mars Reconnaissance Orbiter left Earth in 2005 on a search for evidence that water persisted on the surface of Mars for a long period of time. While other Mars missions have shown that water flowed across the surface in Mars’ history, it remained a mystery whether water was ever around long enough to provide a habitat for life.
In addition to using the rover to study Mars, we’re using data and imagery from this mission to survey possible future human landing sites on the Red Planet.
Curiosity
The Curiosity rover is the largest and most capable rover ever sent to Mars. It launched November 26, 2011 and landed on Mars on Aug. 5, 2012. Curiosity set out to answer the question: Did Mars ever have the right environmental conditions to support small life forms called microbes?
Early in its mission, Curiosity’s scientific tools found chemical and mineral evidence of past habitable environments on Mars. It continues to explore the rock record from a time when Mars could have been home to microbial life.
Space Launch System Rocket
We’re currently building the world’s most powerful rocket, the Space Launch System (SLS). When completed, this rocket will enable astronauts to begin their journey to explore destinations far into the solar system, including Mars.
Orion Spacecraft
The Orion spacecraft will sit atop the Space Launch System rocket as it launches humans deeper into space than ever before. Orion will serve as the exploration vehicle that will carry the crew to space, provide emergency abort capability, sustain the crew during the space travel and provide safe re-entry from deep space return velocities.
Mars 2020
The Mars 2020 rover mission takes the next step in exploration of the Red Planet by not only seeking signs of habitable conditions in the ancient past, but also searching for signs of past microbial life itself.
The Mars 2020 rover introduces a drill that can collect core samples of the most promising rocks and soils and set them aside in a “cache” on the surface of Mars. The mission will also test a method for producing oxygen from the Martian atmosphere, identify other resources (such as subsurface water), improve landing techniques and characterize weather, dust and other potential environmental conditions that could affect future astronauts living and working on the Red Planet.
For decades, we’ve sent orbiters, landers and rovers, dramatically increasing our knowledge about the Red Planet and paving the way for future human explorers. Mars is the next tangible frontier for human exploration, and it’s an achievable goal. There are challenges to pioneering Mars, but we know they are solvable.
To discover more about Mars exploration, visit: https://www.nasa.gov/topics/journeytomars/index.html
Make sure to follow us on Tumblr for your regular dose of space: http://nasa.tumblr.com