just some very Shaped things
A microscopic spectacle: these diatoms (Bacillaria paxillifer) slide parallel to each other in large colonies. I can only speculate as to why, but I imagine it is a method to access sunlight for photosynthesis while also providing a quick route to safety. 250x magnification, 4x speed.
It's not the best "microbiology" art, but it has a very interesting background. Two bacteria from two different clinical cases were inoculated on the TSCB medium. This metallic blue spilling bacterium is of course Pseudomonas aeruginosa. The yellow one (positive reaction on TSCB medium) is Vibrio metschnikovii isolated from chronic UTI in a dog. It was an unusual microbiological diagnosis. But what can you do when even your dog has a better holiday than you? Problems with urination (in this dog) began just after returning from the Mediterranean, the owners and the dog intensively used the charms of warm and salty water.
[🔬 Microscope equipped.]
🧫 e-colin Follow Another day, another dollar trying to infect this host! Rise and grind pathogens 💸
4 μnotes
🦠 cell287776540923 Follow might fuck around and reactivate my oncogenes later
💊 mr-t-cell1989 grins at you violently
2,334 μnotes
🦠 natkiller28937 Follow Who up patrolling the body for cells without MHC Class I molecules 😎😎
🧬 nora-virus Follow You know what? This isn't okay. Pathogens work hard to infect host cells and reproduce. It's the only way for them to perpetuate their own existence. Letting pathogens infect host cells is absolutely necessary to prevent their total extermination. Killing is wrong! Immune cells need to learn to be tolerant of other microbes instead of destroying us just because we want to seize and consume this body's resources.
💊 mr-t-cell1989
🦠 natkiller71642 Follow
🩸 neutro-phil2
30 trillion μnotes
Biology Keychains - Diatoms and Soil Bacteria!
Designed by me, available now on my Etsy!
entoloma haastii (no common name) is a mushroom in the family entolomataceae :-) it is only known to grow in aotearoa, where it often sprouts in leaf litter from southern beech plants.
the big question : can i bite it?? the edibility is unknown, but it is said to be sharp-tasting & sour / bitter.
e. haastii description :
"the cap is initially conical later developing an umbo & becoming rounded or bell-shaped, reaching diameter of 1.5–5.5 cm (0.6–2.2 in) in diameter. older fruit bodies have margins that are turned upward. the cap colour is dark brown or soot-brown but always has a bluish tinge. the surface is dry, covered by radially arranged wrinkles or veins, neither striate nor hygrophanous. the gills are adnexed to almost free from attachment to the stem. they are somewhat distantly spaced, with between 16 & 22 gills extending fully from the stem to the edge of the cap, in addition to one to three tiers of interspersed lamelluae (short gills that do not extend fully from the stem to the cap edge). the gill colour is grey-bluish later becoming pink, & the gill edges are straight or somewhat saw-toothed, & the same colour as the gill face. the stem is 4–10 cm (1.6–3.9 in) by 0.3–1 cm (0.12–0.39 in), bulbous-rooting or club-shaped. the top portion of the stem is deep blue, the colour fading towards the whitish or ochraceous base, strongly fibrillose, dry, hollow, fragile, often twisted. the flesh is blue in the cap & the upper parts of the stem, but whitish or yellowish at the base."
[images : source & source] [fungus description : source]
Breathe deep… and thank phytoplankton.
Why? Like plants on land, these microscopic creatures capture energy from the sun and carbon from the atmosphere to produce oxygen.
Phytoplankton are microscopic organisms that live in watery environments, both salty and fresh. Though tiny, these creatures are the foundation of the aquatic food chain. They not only sustain healthy aquatic ecosystems, they also provide important clues on climate change.
Let’s explore what these creatures are and why they are important for NASA research.
Phytoplankton are an extremely diversified group of organisms, varying from photosynthesizing bacteria, e.g. cyanobacteria, to diatoms, to chalk-coated coccolithophores. Studying this incredibly diverse group is key to understanding the health - and future - of our ocean and life on earth.
Their growth depends on the availability of carbon dioxide, sunlight and nutrients. Like land plants, these creatures require nutrients such as nitrate, phosphate, silicate, and calcium at various levels. When conditions are right, populations can grow explosively, a phenomenon known as a bloom.
Phytoplankton blooms in the South Pacific Ocean with sediment re-suspended from the ocean floor by waves and tides along much of the New Zealand coastline.
Phytoplankton are the foundation of the aquatic food web, feeding everything from microscopic, animal-like zooplankton to multi-ton whales. Certain species of phytoplankton produce powerful biotoxins that can kill marine life and people who eat contaminated seafood.
Phytoplankton play an important part in the flow of carbon dioxide from the atmosphere into the ocean. Carbon dioxide is consumed during photosynthesis, with carbon being incorporated in the phytoplankton, and as phytoplankton sink a portion of that carbon makes its way into the deep ocean (far away from the atmosphere).
Changes in the growth of phytoplankton may affect atmospheric carbon dioxide concentrations, which impact climate and global surface temperatures. NASA field campaigns like EXPORTS are helping to understand the ocean's impact in terms of storing carbon dioxide.
NASA studies phytoplankton in different ways with satellites, instruments, and ships. Upcoming missions like Plankton, Aerosol, Cloud, ocean Ecosystem (PACE) - set to launch Jan. 2024 - will reveal interactions between the ocean and atmosphere. This includes how they exchange carbon dioxide and how atmospheric aerosols might fuel phytoplankton growth in the ocean.
Information collected by PACE, especially about changes in plankton populations, will be available to researchers all over the world. See how this data will be used.
The Ocean Color Instrument (OCI) is integrated onto the PACE spacecraft in the cleanroom at Goddard Space Flight Center. Credit: NASA
What advice would you give to someone who is going into microbiology ? Love your blog 😺
thank you! 🫶🏻
for someone going into microbiology, i’d definitely recommend putting effort into your chemistry courses, especially if they’re not your strong suit (i’m not very good at chemistry)
also, take any lab experiences that you can get, even if they’re not micro! any time that you can get into the lab and get your hands dirty (metaphorically speaking) will help you develop your skills!