Hemitrichia serpula by rorymacro
Watch what happens to Germs when you wash your hands with Soap at microscopic level. 🔬 The Soap molecules surround germ cells and disrupt their cell walls, causing them to burst.
Germ cells are surrounded by a cell wall that protects them from the environment. This cell wall is made up of a layer of peptidoglycan, which is a polymer of amino acids and sugars. Soap molecules are made up of two parts: a hydrophobic (water-fearing) tail and a hydrophilic (water-loving) head. When soap is added to water, the hydrophobic tails group together and the hydrophilic heads face outward, forming micelles. These micelles can surround germ cells and the hydrophobic tails can then disrupt the cell walls, causing the cells to burst.
The hydrophobic tails of the soap molecules can disrupt the cell wall in two ways. First, they can bind to the peptidoglycan molecules and weaken the bonds between them. Second, they can create holes in the cell wall. Once the cell wall is disrupted, the germ cells lose their internal contents and die.
It is important to note that soap only works to kill germ cells that are surrounded by a cell wall. Germ cells that do not have a cell wall, such as viruses, are not affected by soap.
The size of the soap micelles is important. Micelles that are too small will not be able to surround the germ cells. Micelles that are too large will not be able to penetrate the cell walls.
The concentration of soap is also important. A higher concentration of soap will be more effective at killing germ cells.
The temperature of the water can also affect the effectiveness of soap. Soap is more effective at killing germ cells in warm water than in cold water.
I hope this post has helped you understand the importance of handwashing and why doctors always ask you to do it regularly. Washing your hands with soap and water for at least 20 seconds is one of the best ways to prevent the spread of germs and stay healthy. So please, wash your hands often and help keep yourself and others safe!
Thank you for reading this post. I hope you found it informative and helpful. Please share it with your friends and family so they can learn about the importance of handwashing too. 😊🙏
Although they are scientific I think they make really cool art pieces i like to use them as reference images when practicing how to use colored pencils
photo source-The MacroClub Project (Myxomycetes)
Slime Mold
Hiiii!!
Could you guys please vote for my agar art in this contest? 🌿🌸
It would mean the world to me 🥹
Mangrove box jellyfish (Tripedalia cystophora) is a small species of box jellyfish, native to the Caribbean Sea and the Central Indo-Pacific, presenting a simple nervous system. But despite tiny, researchers have demonstrated present the ability to learn by association. Although has no central brain, and being the size of the finger-tip, this box jelly can be trained to associate the sensation of bumping into something with a visual cue, and to use the information to avoid future collisions.
In the wild, the Mangrove box jellyfish forage for tiny crustaceans between the roots of mangroves. To mimic this environment, researchers placed the box jellies in cylindrical tanks that had either black and white or grey and white vertical stripes on the walls. To the jellyfish, the dark stripes looked like mangrove roots in either clear or murky water. In the ‘murky water’ tanks, the jellyfish bumped into the wall because their visual system couldn’t detect the grey stripes very clearly. But after a few minutes, they learnt to adjust their behaviour, pulsing rapidly to swim away from the wall when they got too close, this state learning is based on the combination of visual and mechanical stimuli in simple animals with no brain.
The learning process, in difference with vertebrate animals, doesnt occurs in a central neuronal organs, but instead in a small organs named rhopalial nervous system, which act as learning center, in which the jelly combines visual and mechanical stimuli during operant conditioning.
Main image: An adult specimen of the box jellyfish T. cystophora., showing where is located one of the four sensory structures named rhopalia, which includes two lens eyes. Each rhopalium also contains a visual information processing center.
Reference (Open Access): Bielecki et al., 2023. Associative learning in the box jellyfish Tripedalia cystophora. Current Biology.
When I was in the hospital, they gave me a big bracelet that said ALLERGY, but like. I'm allergic to bees. Were they going to prescribe me bees in there.