In my new scale, °X, 0 is Earths' record lowest surface temperature, 50 is the global average, and 100 is the record highest, with a linear scale between each point and adjustment every year as needed.
Temperature Scales [Explained]
Transcript Under the Cut
Temperature Scales
[A table with five columns, labelled: Unit, water freezing point, water boiling point, notes, cursedness. There are eleven rows below the labels.]
[Row 1:] Celsius, 0, 100, Used in most of the world, 2/10 [Row 2:] Kelvin, 273.15, 373.15, 0K is absolute zero, 2/10 [Row 3:] Fahrenheit, 32, 212, Outdoors in most places is between 0–100, 3/10 [Row 4:] Réaumur, 0, 80, Like Celsius, but with 80 instead of 100, 3/8 [Row 5:] Rømer, 7.5, 60, Fahrenheit precursor with similarly random design, 4/10, [Row 6:] Rankine, 491.7, 671.7, Fahrenheit, but with 0°F set to absolute zero, 6/10 [Row 7:] Newton, 0, 33-ish, Poorly defined, with reference points like "the hottest water you can hold your hand in", 7-ish/10 [Row 8:] Wedgewood, –8, –6.7, Intended for comparing the melting points of metals, all of which it was very wrong about, 9/10 [Row 9:] Galen, –4?, 4??, Runs from –4 (cold) to 4 (hot). 0 is "normal"(?), 4/–4 [Row 10:] ''Real'' Celsius, 100, 0, In Anders Celsius's original specification, bigger numbers are ''colder''; others later flipped it, 10/0 [Row 11:] Dalton, 0, 100, A nonlinear scale; 0°C and 100°C are 0 and 100 Dalton, but 50°C is 53.9 Dalton, 53.9/50
Photos of the two major components of the veil nebula, the first one is the eastern veil aka C33 and the second one (the one with the star in the middle) the western veil aka C34. Those are part of a supernova remnant (left over gas and dust from a supernova), their colour are due mainly to two gases present inside. The blue/green colour comes mostly from oxygen (as OIII emission around 500nm by doubly ionised oxygen) and a little bit from hydrogen (as H beta emission at 486nm) where as the red comes nearly completely from hydrogen (as H alpha emission at 656nm).
The first photo is about 2.5 hours of exposure (30x3 min for RGB + 10x5 min for H alpha) and the second one about 3 hours (36x3 min for RGB + 16x5 min for H alpha).
The additional photos taken in hydrogen alpha are added to the normal RGB photos to intensify the colour and visibility of the hydrogen gas (it doesn't show well enough with standard RGB in part due to the lower amount of light it emits an in part due to the sensor's response itself) Here is a version of C33 (eastern veil) with the stars removed as my friends were very impressed by it, hope you like it too.
Picture of the helix nebula / Caldwell 63, this one was a bit of a pain to take as this nebula stays relatively close to the horizon where I live, plus, due to the position of trees and building I only get 1h per night to take photos (had to use pictures from two different nights to get to about 2h of exposure).
This object is also a planetary nebula, like M27 I previously photographed, but it appears much bigger (about 2.5 times) in parte due to it being closer to earth (about 650 light-years compared to about 1360 light-years for the dumbbell nebula/M27).
This nebula has sometimes been referred to as ''the eye of god'' I think you can guess why.
The soon to be white dwarf star at the center of the nebula is (to me at least) a bit more visible in this picture than in the one of M27.
This is the (Great) Orion nebula, also known as M42, it's a giant cloud of interstellar dust and gas. In it many new stars are currently forming, some of them also having planets forming around them.
It is one of the most visible nebula in the northern hemisphere, you just need a pair of binoculars to start observing it. I find such nebulae mesmerising, and wanted to share this image I took.
Picture of IC59 and IC63. This is a pair of nebula located near the star γ Cassiopeia, the big star at the bottom, which is responsible for making the nebula glow. Both nebula are composed of ionise hydrogen responsible for the red colour (especially on IC63) and colder dust/gas responsible for the blue colour (most visible on IC59). γ Cassiopeia can make taking photos of those nebula difficult due to the halos it produces, I did my best to limit its impact during processing, but there is still a faint blue halo around it. IC63 is also known as the Ghost of Cassiopeia due to its shape, it was discovered in 1893 by the German astronomer Max Wolf.
Image taken using a CarbonStar 150/600 newtonian telescope with a 0.95 coma corrector, ZWO ASI294 monochrome camera. 12x300s image for each filter (LRGBHa), total imaging time 5h, stacking and processing done in PixInsight. Details of both objects: IC63
IC59
Those do not look like much, but they are, to the best of my knowledge, Herbig-Haro object (to left: HH 94, top right: HH 249 and bottom: HH 95) Herbig-Haro object are ionised gas clouds formed when the jet of hot plasma ejected at the poles of newly born stars interacts with Interstellar gas, they are thus more common in star forming regions. I first noticed one of them (HH 94) after I shared the image with a friend. The What's in my image PixInsight scrip from SetiAstro was very useful in finding out what that was. I couldn't find a lot of information on those objects specifically (and very few pictures), but a few publications did have images to compare with (orientation differs):
(original publication ref for HH 94 & HH 95; additional publication ref for HH294 aka NGC 2023 HH 3) (better images of other Herbig-Haro object taken by Hubble : 1, 2 & 3) Position of the three objects in the original image (another might be present but I wasn't confident they were visible):
Finale got around to processing the photos of M33 I had taken at the end of august. M33 is a spiral galaxy about half the size of our own galaxy and located about 2.7 million light years from earth. This galaxy has a rather high rate of star formation resulting in numerous ionised hydrogen regions (the red irregular blotches inside the galaxy), some of those being notable enough to have been included in the NGC catalogue or the IC catalogue.
NGC 588 NGC 604 (Example of some of the notable nebula in M33)
On of the first recorded observation of this galaxy was possibly done by Giovanni B. Hodierna before 1654, it was independently rediscovered by Charles Messier in 1764 who added it to his catalog (hence the name Messie 33).
information on the photo - total exposure time : 1h48 min using RGB and Ha filters - camera : ASI294 mm - telescope : Newtonian 150/600 with 0.95x coma corrector - photo edited with pixinsight
For those using PixInsight for treatment/edition, I recently discovered the scrips created by Seti Astro (https://www.setiastro.com/pjsr-scripts), Blemish-Blaster was quite useful to remove the halos from my Ha filter and What's In My Image helped with the identification of nebulas. If you had not heard those scrips, you should check them out.
Listen to the sound of wikipedia
This is a way to listen to changes to wikipedia. You are literally listening to knowledge being added to the world.
Pluck sounds are an addition, strings are subtractions, and the pitch says how how big the edit is. My heart shudders at this I love it so much.
Photo a few galaxies, M81 / bode's galaxy (centre), M82/the cigar galaxy (left) and NGC 3077 (right)
In addition to those three galaxies, there are many other (much) smaller ones hidden among the stars (a few examples):
The red-ish filament visible around M82 are ionised hydrogen gas and dust pushed outwards by galactic-superwind
Those are tough to be a combination of solar winds created by young stars and the shockwaves of frequent supernovas. They mostly occur in starburst galaxy a type of galaxies that experience heightened stars formation generally due to recent gravitational interaction with other galaxies, in the case of M82 the trigger is most likely its neighbour M81.
(Image taken using a CarbonStar 150/600 newtonian telescope with a 0.95 coma corrector, ZWO ASI294 monochrome camera ZWO LRGB filters and Baader 6.5nm Ha filter. 12x180s image for each colour filter (RGB), 6x300s for the Ha filter, total imaging time 2h 54min, stacking and processing done in PixInsight.)
So I just saw a post by a random personal blog that said “don’t follow me if we never even had a conversation before” and?????? Not to be rude but literally what the fuck??????????
I’ve had people (non-pornbots) try to strike conversation out of nowhere in my DMs recently, and now I’m wondering if they were doing that because they wanted to follow me and thought they needed to interact first. I feel compelled to say, just in case, that it’s totally okay to follow this blog (or my side blog, for that matter) even if we’ve never talked before.
Also, I’m legit confused. Is this how follow culture works right now? It was worded like it’s common sense but is that really a thing?
“the arts and sciences are completely separate fields that should be pitted against each other” the overlap of the arts and sciences make up our entire perceivable reality they r fucking on the couch
Astrophotographer & chemist, mid 20'sCurrently on the roof yelling at the clouds to get out of the wayMostly astrophotos I've taken, possibly other science related stuff
51 posts