See Red Spot Nearby Photos From NASA's Juno Mission To Jupiter! Https://goo.gl/oh2WAK

See Red Spot Nearby Photos From NASA's Juno Mission To Jupiter! Https://goo.gl/oh2WAK

See Red Spot nearby photos from NASA's Juno Mission to Jupiter! https://goo.gl/oh2WAK

More Posts from Sciencephysics4all-blog and Others

Fibonacci You Crazy Bastard….
Fibonacci You Crazy Bastard….
Fibonacci You Crazy Bastard….
Fibonacci You Crazy Bastard….
Fibonacci You Crazy Bastard….

Fibonacci you crazy bastard….

As seen in the solar system (by no ridiculous coincidence), Earth orbits the Sun 8 times in the same period that Venus orbits the Sun 13 times! Drawing a line between Earth & Venus every week results in a spectacular FIVE side symmetry!!

Lets bring up those Fibonacci numbers again: 1, 1, 2, 3, 5, 8, 13, 21, 34..

So if we imagine planets with Fibonacci orbits, do they create Fibonacci symmetries?!

You bet!! Depicted here is a:

2 sided symmetry (5 orbits x 3 orbits)

3 sided symmetry (8 orbits x 5 orbits)

5 sided symmetry (13 orbits x 8 orbits) - like Earth & Venus

8 sided symmetry (21 orbits x 13 orbits)

I wonder if relationships like this exist somewhere in the universe….

Read the Book    |    Follow    |    Hi-Res    -2-    -3-    -5-    -8-

#sciphy4all #science #physics #english #important#importanter

#sciphy4all #science #physics #english #important#importanter


Tags
Synthetic membranes created to mimic properties of living cells
Living cells continually remodel their membranes to change their physical characteristics, a process that can affect the behavior of other biomolecules in the cell membrane.

Biochemists at the University of California San Diego have developed artificial cell membranes that grow and remodel themselves in a manner similar to that of living mammalian cells.

The achievement, detailed in a paper published in this week’s issue of the Proceedings of the National Academy of Sciences, follows the successful design last year in the same laboratory of artificial, or synthetic, cell membranes capable of sustaining continual growth. The two developments now bring the researchers closer to mimicking all of the properties of living mammalian cell membranes with synthetic components.

That’s important because synthetic membranes that accurately mimic the behavior of living mammalian cell membranes could be used by biomedical researchers to develop more effective drugs that target membrane proteins and better understand the chemical changes that occur in dysfunctional membranes during disease.

“While artificial membranes have been used to model the properties of native membranes, previous methods have not been able to mimic lipid membrane remodeling,” said Neal Devaraj, an associate professor of chemistry and biochemistry at UC San Diego who headed the research team for both studies. “In our latest study, we show that reversible chemical reactions can be harnessed to achieve spontaneous remodeling of lipids in synthetic membranes.”

Continue Reading.

#sciphy4all #science #physics #photon #black #hole #blackhole #joke

#sciphy4all #science #physics #photon #black #hole #blackhole #joke


Tags
LIFTOFF!

LIFTOFF!

On July 7, three crew members launched from Earth; headed to their new home on the International Space Station. 

Crewmembers Kate Rubins of NASA, Anatoly Ivanishin of Roscosmos and Takuya Onishi of the Japan Aerospace Exploration Agency (JAXA) will spend approximately four months on the orbital complex, returning to Earth in October. 

Photo Credit: (NASA/Bill Ingalls)

Make sure to follow us on Tumblr for your regular dose of space: http://nasa.tumblr.com


Tags

While many eyes are on the rocket Kim just launched at Taylor, SpaceX was busy sending a payload up to ISS and and trying out another experimental landing of a rocket.

And SpaceX succeeded! The first stage segment of the Falcon 9 rocket successfully landed in Cape Canaveral only about 5 minutes after launching.

While SpaceX has been having a some success landing rockets, this is one of the first instances of it doing so while performing a NASA-contracted ISS delivery.

A Hypotrochoid Is A Roulette Traced By A Point P Attached To A Circle Of Radius B Rolling Around The

A hypotrochoid is a roulette traced by a point P attached to a circle of radius b rolling around the inside of a fixed circle of radius a, where P is a distance h from the center of the interior circle. The parametric equations for a hypotrochoid are:

x=(a-b)cost + hcos[(a-b)t/b] y=(a-b)sint + hsin[(a-b)t/b]


Tags

Juno: Inside the Spacecraft

image

Our Juno spacecraft was carefully designed to meet the tough challenges in flying a mission to Jupiter: weak sunlight, extreme temperatures and deadly radiation. Lets take a closer look at Juno:

It Rotates!

image

Roughly the size of an NBA basketball court, Juno is a spinning spacecraft. Cartwheeling through space makes the spacecraft’s pointing extremely stable and easy to control. While in orbit at Jupiter, the spinning spacecraft sweeps the fields of view of its instruments through space once for each rotation. At three rotations per minute, the instruments’ fields of view sweep across Jupiter about 400 times in the two hours it takes to fly from pole to pole.

It Uses the Power of the Sun

image

Jupiter’s orbit is five times farther from the sun than Earth’s, so the giant planet receives 25 times less sunlight than Earth. Juno will be the first solar-powered spacecraft we’ve designed to operate at such a great distance from the sun. Because of this, the surface area of the solar panels required to generate adequate power is quite large.

image

Three solar panels extend outward from Juno’s hexagonal body, giving the overall spacecraft a span of about 66 feet. Juno benefits from advances in solar cell design with modern cells that are 50% more efficient and radiation tolerant than silicon cells available for space missions 20 years ago. Luckily, the mission’s power needs are modest, with science instruments requiring full power for only about six out of each 11-day orbit.

It Has a Protective Radiation Vault

image

Juno will avoid Jupiter’s highest radiation regions by approaching over the north, dropping to an altitude below the planet’s radiation belts, and then exiting over the south. To protect sensitive spacecraft electronics, Juno will carry the first radiation shielded electronics vault, a critical feature for enabling sustained exploration in such a heavy radiation environment.

Juno Science Payload:

Gravity Science and Magnetometers – Will study Jupiter’s deep structure by mapping the planet’s gravity field and magnetic field.

image

Microwave Radiometer – Will probe Jupiter’s deep atmosphere and measure how much water (and hence oxygen) is there.

image

JEDI, JADE and Waves – These instruments will work to sample electric fields, plasma waves and particles around Jupiter to determine how the magnetic field is connected to the atmosphere, and especially the auroras (northern and southern lights).

JADE and JEDI

image

Waves

image

UVS and JIRAM – Using ultraviolet and infrared cameras, these instruments will take images of the atmosphere and auroras, including chemical fingerprints of the gases present.

UVS

image

JIRAM

image

JunoCam – Take spectacular close-up, color images.

image

Follow our Juno mission on the web, Facebook, Twitter, YouTube and Tumblr.

Make sure to follow us on Tumblr for your regular dose of space: http://nasa.tumblr.com

Loading...
End of content
No more pages to load
  • wolandd
    wolandd liked this · 5 years ago
  • latticedimreg
    latticedimreg reblogged this · 6 years ago
  • latticedimreg
    latticedimreg liked this · 6 years ago
  • sciencephysics4all-blog
    sciencephysics4all-blog reblogged this · 7 years ago
sciencephysics4all-blog - Science & Physics 4 all
Science & Physics 4 all

http://sciencephysics4all.com/

31 posts

Explore Tumblr Blog
Search Through Tumblr Tags