From Racing Suits To Robotic Gloves: How To Gear Up With NASA Technology

From Racing Suits to Robotic Gloves: How to Gear Up with NASA Technology

Did you know you are surrounded by NASA technology? From your apartment building to the doctor’s office, and even in your cellphone camera, there is more space in your life than you think!

In the latest edition of Spinoff, we are introducing dozens of new ways NASA technology could cross your path. Whether you need an extra “hand” on the production line or a weatherproof jacket, check out how to gear up with technology made for space.

Grip-Strengthening Glove

A man in a blue polo shirt wears a white and yellow grip-strengthening glove, which he uses to lift and turn various objects, including a large wrench.

Robots are crucial to exploring space and other planets – they could even support astronauts and form the advance party for places humans have yet to reach. But the human machine is hard to replicate.

A collaboration with General Motors helped us build Robonaut 2 – and the design for this robot’s hands has been adapted into a robotic glove that helps manufacturing employees, such as automobile workers, reduce injuries and improve quality control.

The Swedish company Bioservo used the Robo-Glove technology to create the world’s first industrial-strength robotic glove for factory workers who perform repetitive manual tasks.

The Ironhand glove adds force to the user’s grip with artificial tendons and pressure sensors on the palm and the fingers.

The result? Reduced strain on the user’s own tendons and muscles, meaning fewer workplace stress injuries and better comfort for workers.

Temperature-Control Fabrics

NASA astronaut Anne McClain displays a U.S. spacesuit glove that consists of several layers for extra thermal protection and comfort. Thermofoil heaters are also attached inside each of the fingertips in one of the layers of the glove.

Spacesuits need major insulation and temperature control to protect astronauts on extravehicular activities, aka spacewalks. To help solve this, we created a phase-change material with help from the Triangle Research and Development Corporation.

With funding from a NASA Small Business Innovation Research contract, Triangle incorporated the material into a fabric glove insert that could maintain a steady temperature by absorbing and releasing heat, ensuring it feels just right.

While the invention never made it to orbit, it did make it into the driver’s seat.

Outlast Technologies exclusively licensed the material from Triangle and has incorporated it into outdoor gear, bedding, and now – auto racing suits with help from Cambridge, England-based Walero.

Cristiana Oprea, a racer, wears a black Walero racing undergarment while sitting on a red divider at the edge of a racetrack.

Due to extreme temperatures in the cockpit, drivers in almost every major racing championship wear Walero for its cooling properties. Cristiana Oprea (pictured) wears it while driving for the European Rally Championship. Credit: Walero

The race undergarments, bonded with fire-retardant material for added protection, help drivers maintain a lower core temperature and heart rate, which means fewer mistakes and better lap times.

The suits have been sold to both amateur racers and professional NASCAR drivers.

Lightweight Rain Jackets

Astronaut John Grunsfeld works on repairs to the Hubble Space Telescope.

The superinsulating material that makes up space blankets is one of our most ubiquitous spinoffs. Found everywhere from inside the walls and roofs of buildings to cryogenic tanks and MRI machines, radiant barrier technology was first created to insulate spacesuits and spacecraft. And now this NASA spinoff can be found in weatherproof jackets as well.

Inspired by her passion to run following a series of surgeries to help correct a life-threatening injury, Hema Nambiar launched her Larchmont, New York, start-up company 13-One. To create her jacket, she worked with Advanced Flexible Materials Inc.’s brand Heatsheets. The brand was already marketing products like the space blankets traditionally distributed after races to prevent dangerous drops in temperature.

A man wears a 13-One jacket.

The 13-One jackets are designed to be warm and weatherproof, but their thin, reflective lining lets them also be lightweight and easily portable. Credit: Lourenso Ramautar, Out of New York Studio

The resulting line of jackets has a black exterior and a lining to reflect body heat. They weigh less than a pound, are wind- and water-resistant, and easily pack into a small, built-in pouch.

Want to check out more NASA spinoffs? Be sure to find us on spinoff.nasa.gov and on Twitter.

Interested in licensing your own NASA technologies? Check out the NASA Technology Transfer program at technology.nasa.gov.

Make sure to follow us on Tumblr for your regular dose of space!

More Posts from Nasa and Others

7 years ago

Pinpointing the Cause of Earth’s Recent Record CO2 Spike

A new NASA study provides space-based evidence that Earth’s tropical regions were the cause of the largest annual increases in atmospheric carbon dioxide concentration seen in at least 2,000 years.

What was the cause of this?

Scientists suspect that the 2015-2016 El Niño – one of the largest on record – was responsible. El Niño is a cyclical warming pattern of ocean circulation in the Pacific Ocean that affects weather all over the world. Before OCO-2, we didn’t have enough data to understand exactly how El Nino played a part.

image

Analyzing the first 28 months of data from our Orbiting Carbon Observatory (OCO-2) satellite, researchers conclude that impacts of El Niño-related heat and drought occurring in the tropical regions of South America, Africa and Indonesia were responsible for the record spike in global carbon dioxide.

image

These three tropical regions released 2.5 gigatons more carbon into the atmosphere than they did in 2011. This extra carbon dioxide explains the difference in atmospheric carbon dioxide growth rates between 2011 and the peak years of 2015-16.

image

In 2015 and 2016, OCO-2 recorded atmospheric carbon dioxide increases that were 50% larger than the average increase seen in recent years preceding these observations.

image

In eastern and southern tropical South America, including the Amazon rainforest, severe drought spurred by El Niño made 2015 the driest year in the past 30 years. Temperatures were also higher than normal. These drier and hotter conditions stressed vegetation and reduced photosynthesis, meaning trees and plants absorbed less carbon from the atmosphere. The effect was to increase the net amount of carbon released into the atmosphere.

image

In contrast, rainfall in tropical Africa was at normal levels, but ecosystems endured hotter-than-normal temperatures. Dead trees and plants decomposed more, resulting in more carbon being released into the atmosphere.

image

Meanwhile, tropical Asia had the second-driest year in the past 30 years. Its increased carbon release, primarily from Indonesia, was mainly due to increased peat and forest fires -  also measured by satellites.

image

We knew El Niños were one factor in these variations, but until now we didn’t understand, at the scale of these regions, what the most important processes were. OCO-2’s geographic coverage and data density are allowing us to study each region separately.

Why does the amount of carbon dioxide in our atmosphere matter?

The concentration of carbon dioxide in Earth’s atmosphere is constantly changing. It changes from season to season as plants grow and die, with higher concentrations in the winter and lower amounts in the summer. Annually averaged atmospheric carbon dioxide concentrations have generally increased year over year since the 1800s – the start of the widespread Industrial Revolution. Before then, Earth’s atmosphere naturally contained about 595 gigatons of carbon in the form of carbon dioxide. Currently, that number is 850 gigatons.

image

Carbon dioxide is a greenhouse gas, which means that it can trap heat. Since greenhouse gas is the principal human-produced driver of climate change, better understanding how it moves through the Earth system at regional scales and how it changes over time are important aspects to monitor.

image

Get more information about these data HERE.

Make sure to follow us on Tumblr for your regular dose of space: http://nasa.tumblr.com.


Tags
4 years ago

25 Years in Space for ESA & NASA’s Sun-Watching SOHO

A quarter-century ago, the Solar and Heliospheric Observatory (SOHO) launched to space. Its 25 years of data have changed the way we think about the Sun — illuminating everything from the Sun’s inner workings to the constant changes in its outermost atmosphere.

image

SOHO — a joint mission of the European Space Agency and NASA — carries 12 instruments to study different aspects of the Sun. One of the gamechangers was SOHO’s coronagraph, a type of instrument that uses a solid disk to block out the bright face of the Sun and reveal the relatively faint outer atmosphere, the corona. With SOHO’s coronagraph, scientists could image giant eruptions of solar material and magnetic fields, called coronal mass ejections, or CMEs. SOHO’s images revealed shape and structure of CMEs in breathtaking detail.

image

These solar storms can impact robotic spacecraft in their path, or — when intense and aimed at Earth — threaten astronauts on spacewalks and even disrupt power grids on the ground. SOHO is particularly useful in viewing Earth-bound storms, called halo CMEs — so called because when a CME barrels toward us on Earth, it appears circular, surrounding the Sun, much like watching a balloon inflate by looking down on it.

image

Before SOHO, the scientific community debated whether or not it was even possible to witness a CME coming straight toward us. Today, SOHO images are the backbone of space weather prediction models, regularly used in forecasting the impacts of space weather events traveling toward Earth.

Beyond the day-to-day monitoring of space weather, SOHO has been able to provide insight about our dynamic Sun on longer timescales as well. With 25 years under its belt, SOHO has observed a full magnetic cycle — when the Sun’s magnetic poles switch places and then flip back again, a process that takes about 22 years in total. This trove of data has led to revolutions in solar science: from revelations about the behavior of the solar core to new insight into space weather events that explode from the Sun and travel throughout the solar system.

Data from SOHO, sonified by the Stanford Experimental Physics Lab, captures the Sun’s natural vibrations and provides scientists with a concrete representation of its dynamic movements.

The legacy of SOHO’s instruments — such as the extreme ultraviolet imager, the first of its kind to fly in orbit — also paved the way for the next generation of NASA solar satellites, like the Solar Dynamics Observatory and STEREO. Even with these newer instruments now in orbit, SOHO’s data remains an invaluable part of solar science, producing nearly 200 scientific papers every year.

image

Relatively early in its mission, SOHO had a brush with catastrophe. During a routine calibration procedure in June 1998, the operations team lost contact with the spacecraft. With the help of a radio telescope in Arecibo, the team eventually located SOHO and brought it back online by November of that year. But luck only held out so long: Complications from the near loss emerged just weeks later, when all three gyroscopes — which help the spacecraft point in the right direction — failed. The spacecraft was no longer stabilized. Undaunted, the team’s software engineers developed a new program that would stabilize the spacecraft without the gyroscopes. SOHO resumed normal operations in February 1999, becoming the first spacecraft of its kind to function without gyroscopes.

image

SOHO’s coronagraph have also helped the Sun-studying mission become the greatest comet finder of all time. The mission’s data has revealed more than 4,000 comets to date, many of which were found by citizen scientists. SOHO’s online data during the early days of the mission made it possible for anyone to carefully scrutinize a image and potentially spot a comet heading toward the Sun. Amateur astronomers from across the globe joined the hunt and began sending their findings to the SOHO team. To ease the burden on their inboxes, the team created the SOHO Sungrazer Project, where citizen scientists could share their findings.

image

Keep up with the latest SOHO findings at nasa.gov/soho, and follow along with @NASASun on Twitter and facebook.com/NASASunScience.

Make sure to follow us on Tumblr for your regular dose of space: http://nasa.tumblr.com.


Tags
9 years ago

That’s a Wrap - September

Each month, the International Space Station focuses on an area of research. In September, the research focus was biology, encompassing cells, plants, animals, genetics, biochemistry, human physiology and more.

Benefits from this research are vast and include: combating diseases, reducing our environmental footprint, feeding the world’s population and developing cleaner energy.

Here’s a recap of some topics we studied this month:

Cells

image

Scientists studied T-cells in orbit to better understand how human immune systems change as they age. For an immune cell, the microgravity environment mimics the aging process. Because spaceflight-induced and aging-related immune suppression share key characteristics, researchers expect the results from this study will be relevant for the general population.

NASA to Napa

image

We raised a glass to the space station to toast how the study of plants in space led to air purification technology that keeps the air clean in wine cellars and is also used in homes and medical facilities to help prevent mold.

One-Year Mission

image

This month also marked the halfway point of the One-Year Mission. NASA Astronaut Scott Kelly and Roscosmos Cosmonaut Mikhail Kornienko reached the midpoint on Sept. 15. This mission will result in valuable data about human health and the effects of microgravity on the body.

Microbes

image

Since microbes can threaten crew health and jeopardize equipment, scientists study them on astronauts’ skin and aboard the space station. Samples like saliva, blood, perspiration and swaps of equipment are collected to determine how microgravity, environment, diet and stress affect the microorganisms.

Model Organisms

image

Model organisms have characteristics that allow them to easily be maintained, reproduced and studied in a laboratory. Scientists investigate roundworms, medaka fish and rodents on the station because of this reason. They can also provide insight into the basic cellular and molecular mechanisms of the human body.

For more information about research on the International Space Station, go HERE.

Make sure to follow us on Tumblr for your regular dose of space: http://nasa.tumblr.com


Tags
2 years ago
A long-exposure image of a rocket launching to space. The image, which resembles a gigantic beam of light or a lightsaber, was taken several seconds after liftoff. The black launch tower is still visible at the bottom of the image. The background is the clear blue sky. The photo is of a SpaceX Falcon 9 rocket launching NASA’s SpaceX Crew-5 mission to the International Space Station with NASA astronauts Nicole Mann and Josh Cassada, Japan Aerospace Exploration Agency (JAXA) astronaut Koichi Wakata, and Roscosmos cosmonaut Anna Kikina onboard, Wednesday, Oct. 5, 2022, at NASA’s Kennedy Space Center in Florida. Credit: NASA/Joel Kowsky

Digital Creators: Apply to Watch Astronauts Launch to Space with NASA

Do you spend a lot of time online? Would you like to see our next crew of astronauts lift off to the International Space Station?

We're looking for digital content creators of all backgrounds to join us at Kennedy Space Center in Florida for our Crew-6 mission to the space station, set to lift off no earlier than Sunday, Feb. 26. Applications close Friday, Jan. 27 at 3 p.m. EST (2000 UTC)—we'd love to see you there! Apply now.

Can't make this one? Click here to stay updated about future opportunities.


Tags
5 years ago

NASA Tech Launching on the Falcon Heavy

Later this month, a SpaceX Falcon Heavy rocket will take to the skies for the third time to launch the Department of Defense’s Space Test Program-2 (STP-2) mission. Several exciting, one-of-a-kind NASA technology and science payloads are among the two-dozen spacecraft aboard.

image

First, let’s talk about that Falcon Heavy rocket. Its 27 engines generate thrust at liftoff equal to that of approximately 18 airplanes, and it can lift over 140,000 pounds.

image

Managed by the U.S. Air Force Space and Missile Systems Center, STP-2 is the first government-contracted Falcon Heavy launch. It will reuse the two side boosters recovered after the April flight. SpaceX describes it as one of the most challenging launches in the company’s history.

It’s a big deal to us at NASA because we’re launching some pretty cool technologies. The tech will support our future exploration plans by helping improve future spacecraft design and performance. Here’s a bit about each:

Deep Space Atomic Clock

Time is the heartbeat of space navigation. Today, we navigate in deep space by using giant antennas on Earth to send signals to spacecraft, which then send those signals back to Earth. Atomic clocks on Earth measure the time it takes a signal to make this two-way journey. Only then can human navigators on Earth use large antennas to tell the spacecraft where it is and where to go.

Our Jet Propulsion Laboratory has been perfecting an atomic clock fit for exploration missions. The Deep Space Atomic Clock is the first atomic clock designed to fly on a spacecraft destined for beyond Earth's orbit. The timepiece is lighter and smaller—no larger than a toaster oven—than its refrigerator-sized, Earthly counterparts.

image

This miniaturized clock could enable one-way navigation: a spacecraft receives a signal from Earth and can determine its location immediately using its own, built-in navigation system. Even smaller versions of the clock are being investigated right now that could be used for the growing number of small to mid-size satellites. As we go forward to the Moon with the Artemis program, precise measurements of time are key to mission success.

image

The Deep Space Atomic Clock is the primary payload onboard the General Atomics Electromagnetic Systems Orbital Test Bed satellite and will perform a year-long demonstration in space.

Enhanced Tandem Beacon Experiment (E-TBEx)

Two tiny satellites will study how signals can be muddled as they travel through hard-to-predict bubbles in the upper atmosphere. Signals sent from satellites down to Earth (and vice versa) can be disrupted by structured bubbles that sometimes form in Earth's upper atmosphere. Because this region is affected both by weather on Earth and conditions in space, it's hard to predict just when these bubbles will form or how they'll mess with signals.

image

The E-TBEx CubeSats (short for Enhanced Tandem Beacon Experiment) will try to shed some light on that question. As these little satellites fly around Earth, they'll send radio signals (like the ones used by GPS) to receiving stations on the ground. Scientists will be able to look at the signals received and see if they were jumbled as they traveled through the upper atmosphere down to Earth — which will help us track when these bubbles are forming and how much they're interfering with our signals.

Green Propellant Infusion Mission (GPIM)

For decades, we have relied on a highly toxic spacecraft fuel called hydrazine. The Green Propellant Infusion Mission (GPIM) will lay the foundation to replace conventional chemical propulsion systems with a safer and more efficient alternative for next-generation spacecraft.

GPIM will demonstrate a new propellant in space for the first time. Concocted by the U.S. Air Force Research Laboratory, this innovative, “green” fuel—which actually has more of a peach hue—is expected to improve overall spacecraft performance due to its higher density, increased thrust and lower freezing point in comparison with hydrazine.

image

GPIM’s propulsion system, developed by Aerojet Rocketdyne, consists of new compatible tanks, valves and thrusters. During the two-month-long demonstration on a Ball Aerospace spacecraft, engineers will conduct orbital maneuvers to demonstrate the performance of the propellant and propulsion system.

image

Space Environment Testbeds (SET)

It’s not easy being a spacecraft; invisible, energetic particles zip throughout space — and while there are so few that space is considered a vacuum, what’s there still packs a punch. Tiny particles — like those seen here impacting a detector on a Sun-studying spacecraft — can wreak havoc with the electronics we send up into space.

image

Space Environment Testbeds — or SET, for short — is a mission to study space radiation and how it affects spacecraft and electronics in orbit. What looks like snow flurries in these animated images, for example, is actually a solar radiation storm of incredibly fast particles, unleashed by a solar eruption. Energetic particles from the Sun or deep space can spark memory damage or computer upsets on spacecraft, and over time, degrade hardware.

By studying radiation effects and different methods to protect satellites, SET will help future missions improve spacecraft design, engineering and operations.

Follow @NASA_Technology and @NASASun on Twitter for news about the STP-2 launch and our missions aboard.

Check out www.nasa.gov/spacex to stay up-to-date on the launch day and time. Don’t forget to tune into our launch coverage, scheduled to start about 30 minutes before liftoff!

Make sure to follow us on Tumblr for your regular dose of space: http://nasa.tumblr.com.


Tags
9 years ago

What are Gravitational Waves?

Today, the National Science Foundation (NSF) announced the detection of gravitational waves by the Laser Interferometer Gravitational-Wave Observatory (LIGO), a pair of ground-based observatories. But...what are gravitational waves? Let us explain:

image

Gravitational waves are disturbances in space-time, the very fabric of the universe, that travel at the speed of light. The waves are emitted by any mass that is changing speed or direction. The simplest example is a binary system, where a pair of stars or compact objects (like black holes) orbit their common center of mass.

image

We can think of gravitational effects as curvatures in space-time. Earth’s gravity is constant and produces a static curve in space-time. A gravitational wave is a curvature that moves through space-time much like a water wave moves across the surface of a lake. It is generated only when masses are speeding up, slowing down or changing direction.

Did you know Earth also gives off gravitational waves? Earth orbits the sun, which means its direction is always changing, so it does generate gravitational waves, although extremely weak and faint.

What do we learn from these waves?

Observing gravitational waves would be a huge step forward in our understanding of the evolution of the universe, and how large-scale structures, like galaxies and galaxy clusters, are formed.

Gravitational waves can travel across the universe without being impeded by intervening dust and gas. These waves could also provide information about massive objects, such as black holes, that do not themselves emit light and would be undetectable with traditional telescopes.

image

Just as we need both ground-based and space-based optical telescopes, we need both kinds of gravitational wave observatories to study different wavelengths. Each type complements the other.

Ground-based: For optical telescopes, Earth’s atmosphere prevents some wavelengths from reaching the ground and distorts the light that does.

Space-based: Telescopes in space have a clear, steady view. That said, telescopes on the ground can be much larger than anything ever launched into space, so they can capture more light from faint objects.

How does this relate to Einstein’s theory of relativity?

The direct detection of gravitational waves is the last major prediction of Einstein’s theory to be proven. Direct detection of these waves will allow scientists to test specific predictions of the theory under conditions that have not been observed to date, such as in very strong gravitational fields.

image

In everyday language, “theory” means something different than it does to scientists. For scientists, the word refers to a system of ideas that explains observations and experimental results through independent general principles. Isaac Newton's theory of gravity has limitations we can measure by, say, long-term observations of the motion of the planet Mercury. Einstein's relativity theory explains these and other measurements. We recognize that Newton's theory is incomplete when we make sufficiently sensitive measurements. This is likely also true for relativity, and gravitational waves may help us understand where it becomes incomplete.

Make sure to follow us on Tumblr for your regular dose of space: http://nasa.tumblr.com


Tags
6 years ago

Blowing Bubbles in the Gamma-ray Sky

image

Did you know our Milky Way galaxy is blowing bubbles? Two of them, each 25,000 light-years tall! They extend above and below the disk of the galaxy, like the two halves of an hourglass. We can’t see them with our own eyes because they’re only apparent in gamma-ray light, the highest-energy light in the universe.

image

We didn’t even know these humongous structures were smack in the middle of our galaxy until 2010. Scientists found them when they analyzed the first two years of data from NASA’s Fermi Gamma-ray Space Telescope. They dubbed them the “Fermi bubbles” and found that in addition to being really big and spread out, they seem to have well-defined edges. The bubbles’ shape and the light they give off led scientists to think they were created by a rapid release of energy. But by what? And when?

image

One possible explanation is that they could be leftovers from the last big meal eaten by the supermassive black hole at the center of our galaxy. This monster is more than 4 million times the mass of our own Sun. Scientists think it may have slurped up a big cloud of hydrogen between 6 and 9 million years ago and then burped jets of hot gas that we see in gamma rays and X-rays.

image

Another possible explanation is that the bubbles could be the remains of star formation. There are massive clusters of stars at very the center of the Milky Way — sometimes the stars are so closely packed they’re a million times more dense than in the outer suburb of the galaxy where we live. If there was a burst of star formation in this area a few million years ago, it could have created the surge of gas needed to in turn create the Fermi bubbles.

image

It took us until 2010 to see these Fermi bubbles because the sky is filled with a fog of other gamma rays that can obscure our view. This fog is created when particles moving near light speed bump into gas, dust, and light in the Milky Way. These collisions produce gamma rays, and scientists had to factor out the fog to unveil the bubbles.

image

Scientists continue to study the possible causes of these massive bubbles using the 10 years of data Fermi has collected so far. Fermi has also made many other exciting discoveries — like the the collision of superdense neutron stars and the nature of space-time. Learn more about Fermi and how we’ve been celebrating its first decade in space.

Make sure to follow us on Tumblr for your regular dose of space: http://nasa.tumblr.com


Tags
9 years ago

Solar System: Top 5 Things to Know This Week

It’s only Tuesday and this week is already filled with news about our solar system. Here are the top five things to know this week:

1) Mars!

image

With five spacecraft in orbit and two rovers exploring the ground, there’s always something new and interesting about the Red Planet. Yesterday things got even more exciting when we released the most compelling evidence yet that liquid water sometimes flows on Mars today.

2) HTV-5 Cargo Ship

image

On Monday, the HTV-5 cargo ship was released from the International Space Station to burn up as it reenters Earth’s atmosphere. The HTV-5 carried a variety of experiments and supplies to the space station, and was docked for five weeks.

3) Pluto Continues to Excite

image

If you haven’t been keeping up with the weekly releases of newly downloaded pictures from our New Horizons spacecraft, you are definitely missing out. But don’t worry, we have you covered. The latest updates can be found HERE, be sure to follow along as new information is released. More images are scheduled to be featured on Oct. 1.

4) Cassini Mission

image

This week on Sept. 30, our Cassini spacecraft will reach the closest point to Saturn in it’s latest orbit around the planet. Just to put things in perspective, that will be Cassini’s 222nd orbit around Saturn! Learn more about this mission HERE.

5) What Happened to Mars’ Atmosphere?

image

Believe it or not, the Martian atmosphere we see today used to be much more substantial many years ago. What happened? Our Mars Atmosphere and Volatile EvolutioN (MAVEN) spacecraft has been in orbit around Mars for one Earth year, searching for the answers. Learn more HERE.

Make sure to follow us on Tumblr for your regular dose of space:http://nasa.tumblr.com


Tags
9 years ago

Ten Years After Katrina

Ten Years After Katrina

As we remember the devastation that Hurricane Katrina caused ten years ago, we also look to the improvements made in the past decade in storm prediction and forecasting.

Hurricane Katrina impacted many people, businesses and communities; and even two NASA facilities were hit by the storm. Marshall Space Flight Center and Michoud Assembly Facility were both hit by the harsh storm (seen below).

Ten Years After Katrina

During Hurricane Katrina in 2005, our satellites were hard at work monitoring and watching the storm from above. Thanks to the higher resolution models we have today, simulations can recreate historical storms, like the below of Hurricane Katrina. Scientists can then study these and learn about past events.

Ten Years After Katrina

Surprisingly, the United States hasn’t experienced the landfall of a Category 3 hurricane or lager since 2005. This is the longest period of time that has passed without a major hurricane making landfall in the U.S. since reliable records began in 1850.

Ten Years After Katrina

Although we don’t know when a severe storm will form, we do know that advancements in technology can help us better prepare and predict its path. So, on this ten year mark of this devastating storm, we look back to remember what we saw: https://www.flickr.com/photos/gsfc/sets/72157656646633089


Tags
5 years ago

Five Reasons You Wouldn’t Want to Live Near a Black Hole

Black holes are mystifying yet terrifying cosmic phenomena. Unfortunately, people have a lot of ideas about them that are more science fiction than science. Black holes are not cosmic vacuum cleaners, sucking up anything and everything nearby. But there are a few ways Hollywood has vastly underestimated how absolutely horrid black holes really are.

Black holes are superdense objects with a gravitational pull so strong that not even light can escape them. Scientists have overwhelming evidence for two types of black holes, stellar and supermassive, and see hints of an in-between size that’s more elusive. A black hole’s type depends on its mass (a stellar black hole is five to 30 times the mass of the Sun, while a supermassive black hole is 100,000 to billions of times the mass of the Sun), and can determine where we’re most likely to find them and how they formed. 

image

Let's focus on supermassive black holes for now, shall we? Supermassive black holes exist in the centers of most large galaxies. Some examples are Sagittarius A* (that’s pronounced “A-star”) at the center of our Milky Way and the black hole at the center of galaxy Messier 87, which became famous earlier this year when the Event Horizon Telescope released an image of it. As the name suggests, these black holes are — well — supermassive. Why are they so enormous? Scientists suspect it has something to do with their locations in the centers of galaxies. With so many stars and lots of gas there, they can grow large rapidly (astronomically speaking).

You may have seen a portrayal of planets around supermassive black holes in the movies. But what would the conditions on those worlds actually look like? What kinds of problems might you face?

image

1. 100% chance for cosmic winds

“Space weather” describes the changing conditions in space caused by stellar activity. Solar eruptions produce intense radiation and clouds of charged particles that sweep through our planetary system and can affect technology we rely on, damaging satellites and even causing electrical blackouts. Thankfully, Earth’s atmosphere and magnetic field protect us from most of the storms produced by the Sun.

image

Now, space weather near a black hole would be interesting if the black hole is consuming matter. It could be millions — perhaps even billions — of times stronger than the Sun’s, depending on how close the planet is. Even though black holes don’t emit light themselves, their surroundings can be very bright and hot. Accretion disks — swirling clouds of matter falling toward black holes — emit huge amounts of radiation and particles and form incredible magnetic fields. In them, you’d also have to worry about debris traveling at nearly the speed of light, slamming into your planet. It’d be hard to avoid getting hit by anything coming at you that fast!

2. Hello? Can you still hear us?

We launched the Parker Solar Probe to learn more about the Sun. If you lived on a world around a supermassive black hole, you'd probably want to study it too. But it would be a lot more challenging!

You’d have to launch satellites that could withstand the extreme space weather. And then there would be major communication issues — a time-delay in messages sent between the spacecraft and your planet.

image

On Earth we experience time gaps when talking to missions on Mars. It takes up to 22 minutes to hear back from them. Around a black hole, that effect would be much more extreme. Objects closer to the black hole would experience time differently, making things seem slower than they actually are. That means the delay in communications with a satellite launched toward a black hole would become longer and longer as it got closer and closer. By the time you hear back from your satellite, it might be gone!

3. Can someone turn off the lights?

Supermassive black holes at the centers of galaxies typically have a lot of nearby stars. In fact, if you were to live on a planet near the center of the Milky Way, there would be so many stars you could read at night without using electricity.

image

That sounds kind of cool, right? Maybe — unless your planet is actually orbiting the supermassive black hole. Being that close, the light from all those stars would be concentrated and amplified due to the extreme gravity around the black hole, making the light stronger and even causing scary beams of strong radiation. You would want to have a bucket of sunscreen ready to apply often — or simply never leave your home.

4. Did someone leave the oven on?

And not only would it be really bright, it would also be really toasty, thanks to radioactive heating! Those stars hanging around the black hole emit not just light but ghostly particles called neutrinos— speedy, tiny particles that weigh almost nothing and rarely interact with anything. While neutrinos coming from our Sun aren't enough to harm us, the volume that would be coming from the cluster of stars near a black hole would be enough to radioactively heat up whatever they slam into.

image

The planet would absorb neutrinos, which would, in turn, warm up the core of the planet eventually making it unbearably hot. It would be like living in a nuclear reactor. At least you’d be warm and could toss your winter coats?

5. You are what you eat?

If your planet got too close to a black hole, you’d likely face a gruesome fate. The forces from the black hole's gravity stretch matter, essentially turning it into a noodle. We call this spaghettification. (Beware the cosmic pasta-making machine?) Imagine yourself falling feet-first toward a black hole. Spaghettification happens because the gravity at your feet is sooooo much stronger than that at your head that you start to stretch out!

image

Maybe you wish you could simply drift around a black hole in a spacecraft and enjoy the view, or travel through one like science fiction depicts. Sadly, even if we had the means to get close to a black hole, it clearly wouldn’t be that simple or even very enjoyable.

Watch Dr. Jeremy Schnittman’s talk on the science behind the black hole from the movie Interstellar here.

Make sure to follow us on Tumblr for your regular dose of space: http://nasa.tumblr.com


Tags
Loading...
End of content
No more pages to load
  • mellyrou
    mellyrou reblogged this · 11 months ago
  • jadegrimm
    jadegrimm reblogged this · 1 year ago
  • jadegrimm
    jadegrimm liked this · 1 year ago
  • evich
    evich liked this · 1 year ago
  • tsub1t
    tsub1t reblogged this · 1 year ago
  • trans9000
    trans9000 reblogged this · 1 year ago
  • trans9000
    trans9000 liked this · 1 year ago
  • crow-speaks
    crow-speaks reblogged this · 1 year ago
  • cepheusdevoured
    cepheusdevoured liked this · 1 year ago
  • the-cloudwatcher
    the-cloudwatcher liked this · 1 year ago
  • 90s-html-lesbians
    90s-html-lesbians liked this · 2 years ago
  • tetraquad3prosequi
    tetraquad3prosequi liked this · 2 years ago
  • okcsportsguy
    okcsportsguy reblogged this · 2 years ago
  • korvitval
    korvitval reblogged this · 2 years ago
  • korvitval
    korvitval liked this · 2 years ago
  • spirits-of-the-nightsky
    spirits-of-the-nightsky liked this · 2 years ago
  • noilaedi
    noilaedi liked this · 2 years ago
  • octal-alchemist
    octal-alchemist liked this · 2 years ago
  • orbital-mechanics
    orbital-mechanics liked this · 2 years ago
  • birdageddon
    birdageddon liked this · 2 years ago
  • maguixinha0202-blog
    maguixinha0202-blog liked this · 2 years ago
  • consenticalmonster
    consenticalmonster reblogged this · 2 years ago
  • shvx9rztt0
    shvx9rztt0 liked this · 2 years ago
  • 6yhr33ntf2
    6yhr33ntf2 liked this · 2 years ago
  • 8xvrq8m7uv
    8xvrq8m7uv liked this · 2 years ago
  • aa16wgclcj
    aa16wgclcj liked this · 2 years ago
  • lr1uukl97z
    lr1uukl97z liked this · 2 years ago
  • t3rg0jhlph
    t3rg0jhlph liked this · 2 years ago
  • phzkce5llg
    phzkce5llg liked this · 2 years ago
  • yyqcsig2w1
    yyqcsig2w1 liked this · 2 years ago
  • ze21nviiw5
    ze21nviiw5 liked this · 2 years ago
  • g58tzd8yex
    g58tzd8yex liked this · 2 years ago
  • lkhkm74y07
    lkhkm74y07 liked this · 2 years ago
  • x6q6ra111f
    x6q6ra111f liked this · 2 years ago
  • gt6ruguhk5
    gt6ruguhk5 liked this · 2 years ago
  • uz6qa14ypv
    uz6qa14ypv liked this · 2 years ago
  • a97v2pyr8p
    a97v2pyr8p liked this · 2 years ago
  • u0m1m3q2q1
    u0m1m3q2q1 liked this · 2 years ago
  • 6pno87b3q6
    6pno87b3q6 liked this · 2 years ago
  • qgdfiqsrsw
    qgdfiqsrsw liked this · 2 years ago
  • lgk7q6isxg
    lgk7q6isxg liked this · 2 years ago
  • a90zoji2fl
    a90zoji2fl liked this · 2 years ago
  • 7dzvwfqiff
    7dzvwfqiff liked this · 2 years ago
nasa - NASA
NASA

Explore the universe and discover our home planet with the official NASA Tumblr account

1K posts

Explore Tumblr Blog
Search Through Tumblr Tags