Orion’s Top Images Of 2020

Orion’s top images of 2020

The Orion program showed its resilience this year during an unprecedented time, racking up several success stories building and testing the spacecraft in preparation for upcoming Artemis missions to the Moon. From hot fire and structural testing, to crew and service module assembly activities, progress on Orion brought the agency closer to sending the first woman and next man to the Moon by 2024, and sustainable lunar exploration by 2028.

Orion’s Top Images Of 2020

Ensuring crew safety, a hot fire test was conducted on the Northrop Grumman-built attitude control motor – which provides steering for Orion’s  launch abort system in the event of an emergency during ascent – at the company’s facility in Elkton, Maryland. The 30-second hot fire was the third and final test to qualify the motor for human missions, beginning with Artemis II.

Orion’s Top Images Of 2020

During a three-month testing campaign at NASA’s Plum Brook Station in Sandusky, Ohio, the Orion spacecraft was subjected to the extreme temperatures and electromagnetic environment it will experience on Artemis I – Orion’s first uncrewed test flight to the Moon atop the agency’s  Space Launch System (SLS) rocket. Testing wrapped up early and the vehicle was readied for its journey back to NASA’s Kennedy Space Center aboard the agency’s one-of-a-kind Super Guppy.

Orion’s Top Images Of 2020

Before NASA astronauts fly Orion on missions to the Moon and back, testing is necessary to verify the spacecraft’s ability to withstand the stresses of launch, climb to orbit, the harsh conditions of deep space transit, and return to Earth. Engineers from NASA and its prime contractor, Lockheed Martin, completed testing on Orion’s Structural Test Article (STA) for Artemis I. The STA is structurally identical to Orion’s main spacecraft elements: the crew module, service module and launch abort system.

Orion’s Top Images Of 2020

The first element machined for the Artemis III Orion crew module – a cone panel with openings for windows, which will provide a spectacular view – was designed by Lockheed Martin, and manufactured by AMRO Fabricating Corp., of South El Monte, California. The completed panel made its way to NASA’s Michoud Assembly Facility near New Orleans, where engineers will weld it with other elements as part of Orion’s pressure vessel.

Orion’s Top Images Of 2020

Orion’s European Service Module primary structure for the Artemis for the Artemis III mission arrived at the Airbus facility in Bremen, Germany, from its Thales Alenia Space manufacturing site in Turin, Italy. The service module will be equipped with components to power Orion and provide life support to astronauts – such as air, water, heat and cooling – during the mission that will land the first woman and next man on the Moon.

Orion’s Top Images Of 2020

Three spacecraft adapter jettison fairing panels were fitted onto Orion’s service module inside the Neil Armstrong Operations and Checkout Building at Kennedy. Once secured, the panels encapsulate the service module to protect it from harsh environments such as heat, wind, and acoustics as the spacecraft is propelled out of Earth’s atmosphere atop the SLS rocket during NASA’s Artemis I mission.

More Posts from Nasa and Others

2 years ago

Why Isn’t Every Year the Warmest Year on Record?

This just in: 2022 effectively tied for the fifth warmest year since 1880, when our record starts. Here at NASA, we work with our partners at NOAA to track temperatures across Earth’s entire surface, to keep a global record of how our planet is changing.

Overall, Earth is getting hotter.

Data visualization of temperature anomalies on Earth from 1880-2022. The visualization gradually progresses from more blues, which represent cooler temperatures, to more reds, higher temperatures. Credit: NASA’s Scientific Visualization Studio

The warming comes directly from human activities – specifically, the release of greenhouse gases like carbon dioxide from burning fossil fuels. We started burning fossil fuels in earnest during the Industrial Revolution. Activities like driving cars and operating factories continue to release greenhouse gases into our atmosphere, where they trap heat in the atmosphere.

Animation of energy coming from the Sun and bouncing off a pollution cloud back into space. A red beam of heat energy from Earth's surface into the cloud of pollution, trapped near the surface. Credit: NASA/CI Labs

So…if we’re causing Earth to warm, why isn’t every year the hottest year on record?

As 2022 shows, the current global warming isn’t uniform. Every single year isn’t necessarily warmer than every previous year, but it is generally warmer than most of the preceding years. There’s a warming trend.

Earth is a really complex system, with various climate patterns, solar activity, and events like volcanic eruptions that can tip things slightly warmer or cooler.

Climate Patterns

While 2021 and 2022 continued a global trend of warming, they were both a little cooler than 2020, largely because of a natural phenomenon known as La Niña.

La Niña is one third of a climate phenomenon called El Niño Southern Oscillation, also known as ENSO, which can have significant effects around the globe. During La Niña years, ocean temperatures in the central and eastern Pacific Ocean cool off slightly. La Niña’s twin, El Niño brings warmer temperatures to the central and eastern Pacific. Neutral years bring ocean temperatures in the region closer to the average.

Data visualization of ocean temperature anomalies in the Pacific during an El Nino. A dark red blob of warm water appears to head from the central tropical ocean toward South America. Credit: NASA’s Scientific Visualization Studio

El Niño and La Niña affect more than ocean temperatures – they can bring changes to rainfall patterns, hurricane frequency, and global average temperature.

We’ve been in a La Niña mode the last three, which has slightly cooled global temperatures. That’s one big reason 2021 and 2022 were cooler than 2020 – which was an El Niño year.

Overall warming is still happening. Current El Niño years are warmer than previous El Niño years, and the same goes for La Niña years. In fact, enough overall warming has occurred that most current La Niña years are warmer than most previous El Niño years. This year was the warmest La Niña year on record.

Graph visualizing average global temperature anomalies 1950 to 2022. Each bar is colored to indicate an El Nino, La Nina, or neutral year. The lines get progressively taller as temperatures increase. Credit: NASA

Solar Activity

Our Sun cycles through periods of more and less activity, on a schedule of about every 11 years. Here on Earth, we might receive slightly less energy — heat — from the Sun during quieter periods and slightly more during active periods.

Two visualizations of the rotating yellow Sun, side by side. One, labeled Solar Minimum, has very few dark sunspots. The other, labeled Solar Maximum, has a number of dark sunspots and outbursts. Credit: NASA

At NASA, we work with NOAA to track the solar cycle. We kicked off a new one – Solar Cycle 25 – after solar minimum in December 2019. Since then, solar activity has been slightly ramping up.

Because we closely track solar activity, we know that over the past several decades, solar activity hasn't been on the rise, while greenhouse gases have. More importantly, the "fingerprints" we see on the climate, including temperature changes in the upper atmosphere, don't fit the what we'd expect from solar-caused warming. Rather they look like what we expect from increased greenhouse warming, verifying a prediction made decades ago by NASA.

Volcanic Eruptions

Throughout history, volcanoes have driven major shifts in Earth’s climate. Large eruptions can release water vapor — a greenhouse gas like carbon dioxide — which traps additional warmth within our atmosphere.

On the flip side, eruptions that loft lots of ash and soot into the atmosphere can temporarily cool the climate slightly, by reflecting some sunlight back into space.

Like solar activity, we can monitor volcanic eruptions and tease out their effect on variations in our global temperature.

A view from space of a volcanic eruption. A plume of ash and smoke bubbles up from the center of the frame, in the ocean, expanding rapidly as it erupts upward. As it erupts, the Sun starts to set. Credit: NOAA/GOES

At the End of the Day, It’s Us

Our satellites, airborne missions, and measurements from the ground give us a comprehensive picture of what’s happening on Earth every day. We also have computer models that can skillfully recreate Earth’s climate.

By combining the two, we can see what would happen to global temperature if all the changes were caused by natural forces, like volcanic eruptions or ENSO. By looking at the fingerprints each of these climate drivers leave in our models, it’s perfectly clear: The current global warming we’re experiencing is caused by humans.

For more information about climate change, visit climate.nasa.gov.

Make sure to follow us on Tumblr for your regular dose of space!


Tags
9 years ago

Answer Time with NASA Astronaut Peggy Whitson

image

Ever wonder what it’s like to be a NASA astronaut? On Thursday, Oct. 29, NASA Astronaut Peggy Whitson will answer your questions! She’ll explain how it takes the NASA Village to help train for her mission to space, what the challenges of living in space are and what it’s like to be a NASA astronaut.

Enter your questions here. The Answer Time begins at 3 p.m. EDT on Thursday, Oct. 29.

Fun facts about NASA Astronaut Peggy Whitson:

Astronaut Whitson was selected as an Astronaut Candidate in April 1996, and started training in August of the same year.

After completing two years of training and evaluation, she served as the lead for the Crew Test Support Team in Russia from 1998 to 1999.

Astronaut Whitson completed two six-month tours of duty aboard the International Space Station.

She has accumulated 377 days in space between two missions, which is the most for any woman.

Astronaut Whitson has performed a total of six career spacewalks, adding up to 39 hours and 46 minutes! She is also one of only a handful of people to perform spacewalks in both Russian and US spacesuits.

She is scheduled to launch in late 2016 as part of the Expedition 50/51.

Firsts:

Science Officer of the International Space Station

Female Commander for the International Space Station

Female to serve as Chief of the Astronaut Office

Follow her on social media to see how it takes a NASA Village to train her for her upcoming mission: Tumblr, Facebook and Twitter. 


Tags
2 years ago

Tour the Ocean through the Art of Sound

The ocean is one of the largest ecosystems on our planet. From eye-catching waves to the darkness of the twilight zone, it’s a place filled with mystery and rapid change.

An aerial view of a coastline and ocean are the background to text which reads "Sounds of the Sea".

For a scientist studying ocean color at NASA’s Goddard Space Flight Center in Greenbelt, Maryland, there was one more question–what does it sound like?

Before long, a “symphonic ocean experience” was born, combining satellite imagery, ocean color data and programming expertise. Learn more about how data gets converted to music and sound here:

This World Oceans Day, enjoy a tour of the ocean set to sound. Here we go:

Sounds of the Sea
SoundCloud
For World Oceans Month, enjoy a moment of zen with a symphonic tour of the ocean. Experience the swirls off the coast of Río de la Plata to

Bering Sea

This melody explores the phytoplankton blooms in the western Bering Sea along the coast of the Kamchatka Peninsula collected by Aqua/MODIS on May 15, 2021. The melody created for this image was aimed at capturing the movement of the eddies or the circular movements of water. Data came from the image’s red, green, and blue channels.

Rio de la Plata

This melody explores a spring bloom in the South Atlantic Ocean off the coast of Argentina, Uruguay, and Brazil, lending the water many different shades of green, blue, and brown. The Rio de la Plata estuary in the northwest corner of the above image gets most of its tan coloration from sediments suspended in the water. The melody paired with the data evokes the sediment plumes and swirls happening off the coast.

Coral Sea

Data for the sounds of the Coral Sea were collected over the course of one year from the Aqua/Modis satellite. The information was extracted from a series of 32-day rolling averages for the year 2020, displaying the movement of chlorophyll a data.

Chlorophyll a is a specific form of chlorophyll used in photosynthesis. It absorbs most energy from wavelengths of violet-blue and orange-red light. It is a poor absorber of green and near-green portions of the spectrum, and that’s why it appears green.

Western Australia

Off the coast of western Australia is the appearance of swirls in the ocean. To catch the movement of the Indian Ocean, data was collected from 31 days of imagery examining blue wavelengths of light. The information was gathered from the Suomi-NPP/VIIRS instrument aboard the Joint Polar Satellite System (JPSS) series of spacecraft.

More moments of zen

Looking for more moments of zen? Explore them with NASA’s Soundcloud page, where many are out of this world. Curious on how we get these breathtaking ocean images? Take time to read about Goddard Oceanographer Norman Kuring and how he helped create them.


Tags
7 years ago

New Research Heading to Earth’s Orbiting Laboratory

It’s a bird! It’s a plane! It’s a…dragon? A SpaceX Dragon spacecraft is set to launch into orbit atop the Falcon 9 rocket toward the International Space Station for its 12th commercial resupply (CRS-12) mission August 14 from our Kennedy Space Center in Florida.

image

It won’t breathe fire, but it will carry science that studies cosmic rays, protein crystal growth, bioengineered lung tissue.

image

Here are some highlights of research that will be delivered:

I scream, you scream, we all scream for ISS-CREAM! 

Cosmic Rays, Energetics and Mass, that is! Cosmic rays reach Earth from far outside the solar system with energies well beyond what man-made accelerators can achieve. The Cosmic Ray Energetics and Mass (ISS-CREAM) instrument measures the charges of cosmic rays ranging from hydrogen to iron nuclei. Cosmic rays are pieces of atoms that move through space at nearly the speed of light

image

The data collected from the instrument will help address fundamental science questions such as:

Do supernovae supply the bulk of cosmic rays?

What is the history of cosmic rays in the galaxy?

Can the energy spectra of cosmic rays result from a single mechanism?

ISS-CREAM’s three-year mission will help the scientific community to build a stronger understanding of the fundamental structure of the universe.

Space-grown crystals aid in understanding of Parkinson’s disease

The microgravity environment of the space station allows protein crystals to grow larger and in more perfect shapes than earth-grown crystals, allowing them to be better analyzed on Earth. 

image

Developed by the Michael J. Fox Foundation, Anatrace and Com-Pac International, the Crystallization of Leucine-rich repeat kinase 2 (LRRK2) under Microgravity Conditions (CASIS PCG 7) investigation will utilize the orbiting laboratory’s microgravity environment to grow larger versions of this important protein, implicated in Parkinson’s disease.

image

Defining the exact shape and morphology of LRRK2 would help scientists to better understand the pathology of Parkinson’s and could aid in the development of therapies against this target.

Mice Help Us Keep an Eye on Long-term Health Impacts of Spaceflight

Our eyes have a whole network of blood vessels, like the ones in the image below, in the retina—the back part of the eye that transforms light into information for your brain. We are sending mice to the space station (RR-9) to study how the fluids that move through these vessels shift their flow in microgravity, which can lead to impaired vision in astronauts.

image

By looking at how spaceflight affects not only the eyes, but other parts of the body such as joints, like hips and knees, in mice over a short period of time, we can develop countermeasures to protect astronauts over longer periods of space exploration, and help humans with visual impairments or arthritis on Earth.

Telescope-hosting nanosatellite tests new concept

The Kestrel Eye (NanoRacks-KE IIM) investigation is a microsatellite carrying an optical imaging system payload, including an off-the-shelf telescope. This investigation validates the concept of using microsatellites in low-Earth orbit to support critical operations, such as providing lower-cost Earth imagery in time-sensitive situations, such as tracking severe weather and detecting natural disasters.

image

Sponsored by the ISS National Laboratory, the overall mission goal for this investigation is to demonstrate that small satellites are viable platforms for providing critical path support to operations and hosting advanced payloads.

Growth of lung tissue in space could provide information about diseases

The Effect of Microgravity on Stem Cell Mediated Recellularization (Lung Tissue) uses the microgravity environment of space to test strategies for growing new lung tissue. The cells are grown in a specialized framework that supplies them with critical growth factors so that scientists can observe how gravity affects growth and specialization as cells become new lung tissue.

image

The goal of this investigation is to produce bioengineered human lung tissue that can be used as a predictive model of human responses allowing for the study of lung development, lung physiology or disease pathology.

These crazy-cool investigations and others launching aboard the next SpaceX #Dragon cargo spacecraft on August 14. They will join many other investigations currently happening aboard the space station. Follow @ISS_Research on Twitter for more information about the science happening on 250 miles above Earth on the space station.  

Watch the launch live HERE starting at 12:20 p.m. EDT on Monday, Aug. 14!

Make sure to follow us on Tumblr for your regular dose of space: http://nasa.tumblr.com


Tags
9 years ago

James Webb Space Telescope

image

Imagine seeing 13 billion years back in time, watching the first stars grow, galaxies evolve and solar systems form…our James Webb Space Telescope (JWST) will do just that!

image

As the successor to our Hubble Space Telescope, JWST will be the premier observatory of the next decade, serving thousands of astronomers worldwide. Seems like a lot of pressure, right? Well luckily, JWST is being prepared to fulfill its job by some super smart people…to be exact: more than 1,000 people in more than 17 countries! Once completed and deployed, it will be able to study every phase in the history of our Universe, ranging from the luminous glows after the Big Bang, to the formation of solar systems.

image

The Webb Telescope incorporates several innovative technologies, such as its primary mirror that’s made of 18 separate segments! They are able to unfold and adjust to shape after launch, and are made up of ultra-lightweight beryllium.

image

The sunshield is another impressive component of the telescope. The sunshield of the Webb Telescope is its biggest feature, and is the size of a tennis court! This five-layer monstrosity will deflect light and heat from the Sun, and allow pieces of the observatory to be kept very cold so they are able to operate properly.

image

Last week, we successfully installed the first of 18 flight mirrors onto the telescope, beginning a critical piece of the observatory’s construction. The engineering team used a robot arm to lift and lower the hexagonal-shaped segment that measures just over 4.2 feet (1.3 meters) across and weighs approximately 88 pounds (40 kilograms). The full installation is expected to be complete early next year.

image

This telescope is an international collaboration between NASA, ESA (European Space Agency) and the Canadian Space Agency (CSA), and is scheduled to launch in October of 2018 on an Ariane 5 rocket. Until then, be sure to keep up with construction of this next generation space telescope: Twitter, Facebook.

Also, make sure to follow us on Tumblr for your regular dose of space: http://nasa.tumblr.com 


Tags
6 years ago

What’s a Blood Moon? And Other Lunar Eclipse Questions.

Tonight, Australians, Africans, Europeans, Asians and South Americans will have the opportunity to see the longest lunar eclipse of the century. Sorry North America. 

Lunar eclipses occur about 2-4 times per year, when the Moon passes into the Earth’s shadow. In order to see a lunar eclipse, you must be on the night side of the Earth, facing the Moon, when the Earth passes in between the Moon and the Sun. Need help visualizing this? Here you go:

What’s the difference between a solar eclipse and a lunar eclipse?

An easy way to remember the difference between a solar eclipse and a lunar eclipse is that the word ‘eclipse’ refers to the object that is being obscured. During a solar eclipse, the Moon blocks the Sun from view. During a lunar eclipse, the Earth’s shadow obscures the Moon.

Why does the Moon turn red?  

You may have heard the term ‘Blood Moon’ for a lunar eclipse. When the Moon passes into the Earth’s shadow, it turns red. This happens for the exact same reason that our sunrises and sunsets here on Earth are brilliant shades of pinks and oranges. During a lunar eclipse, the only light reaching the Moon passes through the Earth’s atmosphere. The bluer, shorter wavelength light scatters and the longer wavelength red light passes through and makes it to the Moon.

What science can we learn from a lunar eclipse?

"During a lunar eclipse, the temperature swing is so dramatic that it’s as if the surface of the Moon goes from being in an oven to being in a freezer in just a few hours,” said Noah Petro, project scientist for our Lunar Reconnaissance Orbiter, or LRO, at our Goddard Space Flight Center in Greenbelt, Maryland.

image

The Diviner team from LRO measures temperature changes on the Moon through their instrument on the spacecraft as well as through a thermal camera on Earth. How quickly or slowly the lunar surface loses heat helps scientists determine characteristics of lunar material, including its composition and physical properties.

When is the next lunar eclipse?

North Americans, don’t worry. If skies are clear, you can see the next lunar eclipse on January 21, 2019. The eclipse will be visible to North Americans, South Americans, and most of Africa and Europe.

image

To keep an eye on the Moon with us check out nasa.gov/moon or follow us on Twitter and Facebook.

Make sure to follow us on Tumblr for your regular dose of space: http://nasa.tumblr.com.


Tags
1 year ago

What’s it like having the coolest job ever?


Tags
6 years ago

The Darkness that Followed Hurricane Michael

Earlier this month, the southeastern United States was struck by Hurricane Michael. After the category 4 storm made landfall on Oct. 10, 2018, Hurricane Michael proceeded to knock out power for at least 2.5 million customers across Florida, Georgia, North Carolina, and Virginia. 

image

In this data visualization, you can clearly see where the lights were taken out in Panama City, Florida. A team of our scientists from Goddard Space Flight Center processed and corrected the raw data to filter out stray light from the Moon, fires, airglow, and any other sources that are not electric lights. They also removed atmosphere interference from dust, haze, and clouds. 

image

In the visualization above, you can see a natural view of the night lights—and a step of the filtering process in an effort to clean up some of the cloud cover. The line through the middle is the path Hurricane Michael took. 

image

Although the damage was severe, tens of thousands of electric power industry workers from all over the country—and even Canada—worked together to restore power to the affected areas. Most of the power was restored by Oct. 15, but some people still need to wait a little longer for the power grids to be rebuilt. Read more here. 

Make sure to follow us on Tumblr for your regular dose of space: http://nasa.tumblr.com.


Tags
9 years ago

SpaceX Dragon: What’s Onboard?

SpaceX is scheduled to launch its Dragon spacecraft into orbit on April 8, which will be the company’s eighth mission under our Commercial Resupply Services contract. This flight will deliver science and supplies to the International Space Station.

image

The experiments headed to the orbiting laboratory will help us test the use of an expandable space habitat in microgravity, assess the impact of antibodies on muscle wasting in a microgravity environment, use microgravity to seek insight into the interactions of particle flows at the nanoscale level and use protein crystal growth in microgravity to help in the design of new drugs to fight disease. Here’s an in-depth look at each of them:

The Bigelow Expandable Activity Module (BEAM)

image

Space is in limited supply on the International Space Station, but with BEAM, the amount of crew space could be expanded! BEAM is an experimental expandable capsule that attaches to the space station. After installation, it will expand to roughly 13-feet long and 10.5 feet in diameter, which would provide a large volume where a crew member could enter. During the two-year test mission, astronauts will enter the module for a few hours three-to-four times a year to retrieve sensor data and conduct assessments of the module’s condition.

Why? Expandable habitats greatly decrease the amount of transport volume at launch for future space missions. They not only take up less room on a rocket, but also provide greatly enhanced space for living and working once they are set up.

The Rodent Research-3-Eli Lilly

image

The Rodent Research-3-Eli Lilly investigation will use mice as a model for human health to study whether certain drugs might prevent muscle or bone loss while in microgravity.

Why? Crew members experience significant decreases in their bone density and muscle mass during spaceflight if they do not get enough exercise during long-duration missions. The results could expand scientist’s understanding of muscle atrophy and bone loss in space, by testing an antibody that has been known to prevent muscle wasting in mice on Earth.

Microbial Observatory-1

image

The Microbial Observatory-1 experiment will track and monitor changes to microbial flora over time on the space station.

Why? Obtaining data on these microbial flora could help us understand how such microbes could affect crew health during future long-duration missions.

Micro-10

image

The Micro-10 investigation will study how the stress of microgravity triggers changes in growth, gene expression, physical responses and metabolism of a fungus called Aspergillus nidulans.

Why? This experiment will study fungi in space for the purpose of potentially developing new medicine for use both in space and on Earth. The stressfull environment of space causes changes to all forms of life, from bacteria and fungi, to animals and people.

Genes in Space-1

SpaceX Dragon: What’s Onboard?

Genes in Space-1 is a student-designed experiment that will test whether the polymerase chain reaction (PCR) — which is a fast and relatively inexpensive technique that can amplify or “photocopy” small segments of DNA — could be used to study DNA alterations that crew experience during spaceflight.

Why? In space, the human immune system’s function is altered. Findings from this experiment could help combat some of the DNA changes that crew onboard space station experience while on orbit.

Microchannel Diffusion

image

Nano science and nanotechnology are the study and application of exceptionally small things and can be used across the fields of medicine, biology, computer science and many others. The way fluid moves is very different on this small scale, so scientists want to know how microparticles might interact. The Microchannel Diffusion investigation simulates these interactions by studying them at a larger scale, the microscopic level. This is only possible on the orbiting laboratory, where Earth’s gravity is not strong enough to interact with the molecules in a sample, so they behave more like they would at the nanoscale.

Why? Nanofluidic sensors could measure the air in the space station, or used to deliver drugs to specific places in the body, among other potential uses. Knowledge learned from this investigation may have implications for drug delivery, particle filtration and future technological applications for space exploration.

The CASIS Protein Crystal Growth 4 (CASIS PCG 4)

image

CASIS PCG 4 is made up of two investigations that both leverage the microgravity environment in the growth of protein crystals and focus on structure-based drug design (SBDD). Growing crystals in microgravity avoids some of the obstacles they face on Earth, such as sedimentation.

Why? SBDD is an integral component in the drug discovery and development process. It relies on three-dimensional, structural information provided by the protein crystallography to inform the design of more potent, effective and selective drugs.

Watch the Launch!

image

The Dragon capsule will launch on a Falcon 9 rocket from Cape Canaveral Air Force Station in Florida.

Launch coverage begins at 3:15 p.m. EDT, with launch scheduled for 4:43 p.m. Watch live online on NASA Television: nasa.gov/nasatv

Make sure to follow us on Tumblr for your regular dose of space: http://nasa.tumblr.com


Tags
9 years ago

Things You Might Not Know About Our Sun

image

The sun is a star, a hot ball of glowing gases at the heart of our solar system. Its influence extends far beyond the orbits of distant Neptune and Pluto. Without the sun’s intense energy and heat, there would be no life on Earth. And though it is special to us, there are billions of stars like our sun scattered across the Milky Way galaxy.

image

Impress Your Friends with These Sun Facts:

If the sun were as tall as a typical front door, the Earth would be the size of a U.S. nickel

The temperature at the sun’s core is about 27 million degrees Fahrenheit

Our sun is more massive than the average star in its neighborhood. Nearly 90% of stars are less massive, making them cooler and dimmer

The sun contains 99.9% of all matter in our solar system

During a single second, the sun converts 4 million tons of matter to pure energy

It would take about 1 million Earths to fill the sun if it were a hollow ball

The sun rotates on its axis approximately once every 27 days

The sun is 93 million miles away from Earth and is almost 5 billion years old

Make sure to follow us on Tumblr for your regular dose of space: http://nasa.tumblr.com


Tags
  • saltythexfilesindianjonescop
    saltythexfilesindianjonescop liked this · 2 years ago
  • willieolsen
    willieolsen liked this · 2 years ago
  • steefhits
    steefhits liked this · 3 years ago
  • space-lovers-world-blog
    space-lovers-world-blog liked this · 3 years ago
  • metalzoic
    metalzoic liked this · 3 years ago
  • focusas
    focusas reblogged this · 4 years ago
  • mawusifitnesstraining
    mawusifitnesstraining liked this · 4 years ago
  • edsonlima17
    edsonlima17 liked this · 4 years ago
  • melissathecat
    melissathecat liked this · 4 years ago
  • juicys-world-blog1
    juicys-world-blog1 liked this · 4 years ago
  • miumob
    miumob liked this · 4 years ago
  • beflying
    beflying liked this · 4 years ago
  • pxevx
    pxevx reblogged this · 4 years ago
  • digitalwater
    digitalwater liked this · 4 years ago
  • breathtakingwonders
    breathtakingwonders liked this · 4 years ago
  • sherlocksittinginthelittlecouch
    sherlocksittinginthelittlecouch liked this · 4 years ago
  • sizzlingjudgebanditpaper
    sizzlingjudgebanditpaper liked this · 4 years ago
  • vierge-folle
    vierge-folle liked this · 4 years ago
  • ravenclawserpent
    ravenclawserpent liked this · 4 years ago
  • sunshineisellipsoid
    sunshineisellipsoid liked this · 4 years ago
  • deglorath
    deglorath liked this · 4 years ago
  • bumblebii
    bumblebii liked this · 4 years ago
  • rigel42
    rigel42 liked this · 4 years ago
  • pinkiepieaddict
    pinkiepieaddict reblogged this · 4 years ago
  • serendipitynote
    serendipitynote reblogged this · 4 years ago
  • soohfanni
    soohfanni liked this · 4 years ago
  • vernaee
    vernaee reblogged this · 4 years ago
  • vernaee
    vernaee liked this · 4 years ago
  • phir-milenge
    phir-milenge liked this · 4 years ago
  • ironcreatoroaffish
    ironcreatoroaffish liked this · 4 years ago
  • eugeniobr96
    eugeniobr96 liked this · 4 years ago
  • daniellesteenbrink
    daniellesteenbrink reblogged this · 4 years ago
  • princessgeekdaantje
    princessgeekdaantje liked this · 4 years ago
  • blogjorgefotos
    blogjorgefotos reblogged this · 4 years ago
  • blogjorgefotos
    blogjorgefotos liked this · 4 years ago
  • sweaterbaby22
    sweaterbaby22 liked this · 4 years ago
  • ourannaodessa
    ourannaodessa liked this · 4 years ago
  • adultetoys
    adultetoys liked this · 4 years ago
  • butyoutoldmeiwasfunny
    butyoutoldmeiwasfunny reblogged this · 4 years ago
  • guiltysblog
    guiltysblog liked this · 4 years ago
  • androgynousscissorspsychicbear
    androgynousscissorspsychicbear liked this · 4 years ago
nasa - NASA
NASA

Explore the universe and discover our home planet with the official NASA Tumblr account

1K posts

Explore Tumblr Blog
Search Through Tumblr Tags