Our water-seeking robotic Moon rover just booked a ride to the Moon’s South Pole. Astrobotic of Pittsburgh, Pennsylvania, has been selected to deliver the Volatiles Investigating Polar Exploration Rover, or VIPER, to the Moon in 2023. During its 100-Earth-day mission, the approximately 1,000-pound rover will roam several miles and use its four science instruments to sample various soil environments in search of water ice. Its survey will help pave the way for a new era of human missions to the lunar surface and will bring us a step closer to developing a sustainable, long-term robotic and human presence on the Moon as part of the Artemis program.
Make sure to follow us on Tumblr for your regular dose of space: http://nasa.tumblr.com
Did you miss it? Astronaut Scott Kelly answered questions over the weekend on People Magazine’s Facebook page! Anything and everything from his favorite food in space to his year aboard the International Space Station.
Here are a few highlights from the conversation:
Follow Astronaut Scott Kelly during the remainder of his year in space: Facebook, Twitter, Instagram
Make sure to follow us on Tumblr for your regular dose of space:http://nasa.tumblr.com
We’ve discovered thousands of exoplanets – planets beyond our solar system – so far. These worlds are mysterious, but observations from telescopes on the ground and in space help us understand what they might look like.
Take the planet 55 Cancri e, for instance. It’s relatively close, galactically speaking, at 41 light-years away. It’s a rocky planet, nearly two times bigger than Earth, that whips around its star every 18 hours (as opposed to the 365 days it takes our planet to orbit the Sun. Slacker).
The planet’s star, 55 Cancri, is slightly smaller than our Sun, but it’s 65 times closer than the Sun is to Earth. Imagine a massive sun on the horizon! Because 55 Cancri e is so close to its star, it’s tidally locked just like our Moon is to the Earth. One side is always bathed in daylight, the other is in perpetual darkness. It’s also hot. Really hot. So hot that silicate rocks would melt into a molten ocean of melted rock. IT’S COVERED IN AN OCEAN OF LAVA. So, it’s that hot (between 3,140 degrees and 2,420 degrees F).
Scientists think 55 Cancri e also may harbor a thick atmosphere that circulates heat from the dayside to the nightside. Silicate vapor in the atmosphere could condense into sparkling clouds on the cooler, darker nightside that would reflect the lava below. It’s also possible that it would rain sand on the nightside, but … sparkling skies!
Check out our Exoplanet Travel Bureau's latest 360-degree visualization of 55 Cancri e and download the travel poster at https://go.nasa.gov/2HOyfF3.
Make sure to follow us on Tumblr for your regular dose of space: http://nasa.tumblr.com
The Apollo 11 Moon landing was a feat for the ages. With the help of the NASA History Office, we’ve identified some of the most frequently asked questions surrounding the first time humans walked on the surface of another world. Click here to check out our post from last week.
Believe it or not, yes! The Apollo guidance computer not only had less computing power than a smartphone, it had less computing power than the calculator you use in your algebra class. The computer, designed by MIT, had a fixed memory of 36 kilobytes and an erasable memory of 2 kilobytes. That’s fairly advanced for the time!
A substantial portion of the Apollo 11 crew’s checklist was taking photographs. Taking closeup shots of the "very fine” moon dust was a critical component of mission objectives and helped scientists better understand the surface makeup of the Moon.
Armstrong and Aldrin wore lunar overboots over their main spacesuit boots to protect them from ultraviolet radiation and hazardous rocks. To make room for the nearly 50 pounds (22 kilograms) of lunar samples, the crew left all their pairs of boots on the Moon. But don’t worry; they wouldn’t get charged an overweight baggage fee anyway.
That’s somewhat subject to interpretation. Once the Lunar Module’s surface sensor touched the surface, Buzz Aldrin called out "Contact Light” to Mission Control. After the engine shut down, he said “ACA out of detent,” simply meaning that the Eagle’s Attitude Control Assembly, or control stick, was moved from its center position.
But the first words heard by the entire world after Apollo 11 touched down were delivered by Neil Armstrong: "Houston, Tranquility Base here. The Eagle has landed.” More than six hours later, Armstrong stepped off the Eagle’s footpad and delivered the most famous words ever spoken from the surface of another world: "That's one small step for [a] man, one giant leap for mankind." And although we have a hard time hearing it in the recording, Armstrong clarified in a post-flight interview that he actually said, “That’s one small step for a man...”
We can’t say for sure what our next moonwalkers will decide to say, but perhaps the better question is: What would be your first words if you were to land on the Moon? There’s no doubt that the astronauts of the Artemis Generation will inspire a new crop of explorers the way Apollo Generation astronauts did 50 years ago. Make sure to follow us on Tumblr for your regular dose of space: http://nasa.tumblr.com.
Early astronomers faced an obstacle: their technology. These great minds only had access to telescopes that revealed celestial bodies shining in visible light. Later, with the development of new detectors, scientists opened their eyes to other types of light like radio waves and X-rays. They realized cosmic objects look very different when viewed in these additional wavelengths. Pulsars — rapidly spinning stellar corpses that appear to pulse at us — are a perfect example.
The first pulsar was observed 50 years ago on August 6, 1967, using radio waves, but since then we have studied them in nearly all wavelengths of light, including X-rays and gamma rays.
Most pulsars form when a star — between 8 and 20 times the mass of our sun — runs out of fuel and its core collapses into a super dense and compact object: a neutron star.
These neutron stars are about the size of a city and can rotate slowly or quite quickly, spinning anywhere from once every few hours to hundreds of times per second. As they whirl, they emit beams of light that appear to blink at us from space.
One day five decades ago, a graduate student at the University of Cambridge, England, named Jocelyn Bell was poring over the data from her radio telescope - 120 meters of paper recordings.
Image Credit: Sumit Sijher
She noticed some unusual markings, which she called “scruff,” indicating a mysterious object (simulated above) that flashed without fail every 1.33730 seconds. This was the very first pulsar discovered, known today as PSR B1919+21.
Before long, we realized pulsars were far more complicated than first meets the eye — they produce many kinds of light, not only radio waves. Take our galaxy’s Crab Nebula, just 6,500 light years away and somewhat of a local celebrity. It formed after a supernova explosion, which crushed the parent star's core into a neutron star.
The resulting pulsar, nestled inside the nebula that resulted from the supernova explosion, is among the most well-studied objects in our cosmos. It’s pictured above in X-ray light, but it shines across almost the entire electromagnetic spectrum, from radio waves to gamma rays.
Speaking of gamma rays, in 2015 our Fermi Gamma-ray Space Telescope discovered the first pulsar beyond our own galaxy capable of producing such high-energy emissions.
Located in the Tarantula Nebula 163,000 light-years away, PSR J0540-6919 gleams nearly 20 times brighter in gamma-rays than the pulsar embedded in the Crab Nebula.
No two pulsars are exactly alike, and in 2013 an especially fast-spinning one had an identity crisis. A fleet of orbiting X-ray telescopes, including our Swift and Chandra observatories, caught IGR J18245-2452 as it alternated between generating X-rays and radio waves.
Scientists suspect these radical changes could be due to the rise and fall of gas streaming onto the pulsar from its companion star.
This just goes to show that pulsars are easily influenced by their surroundings. That same year, our Fermi Gamma Ray Space Telescope uncovered another pulsar, PSR J1023+0038, in the act of a major transformation — also under the influence of its nearby companion star.
The radio beacon disappeared and the pulsar brightened fivefold in gamma rays, as if someone had flipped a switch to increase the energy of the system.
Our Neutron star Interior Composition Explorer (NICER) mission, launched this past June, will study pulsars like those above using X-ray measurements.
With NICER’s help, scientists will be able to gaze even deeper into the cores of these dense and mysterious entities.
For more information about NICER, visit https://www.nasa.gov/nicer
Make sure to follow us on Tumblr for your regular dose of space: http://nasa.tumblr.com
Soichi Noguchi was selected as an astronaut with the Japan Aerospace Exploration Agency in 1996. A native of Yokohama, Kanagawa, he is currently a mission specialist for NASA’s SpaceX Crew-1 launch taking flight to the International Space Station on Nov. 14. Soichi will be the first international crewmember on Crew Dragon and the first international partner astronaut to fly aboard three types of orbital spacecraft – the U.S. space shuttle, the Russian Soyuz, and now the SpaceX Crew Dragon! Talk about impressive. He received a B.S. in Aeronautical Engineering in 1989, master's degree in Aeronautical Engineering in 1991, Doctor of Philosophy in Advanced Interdisciplinary Studies in 2020, all from the University of Tokyo.
Soichi took time from preparing for his historic mission to answer questions about his life and career:
After my second flight, I started this research about your sensory system in zero gravity. I used a my own personal video, which I took during my last two flights at the International Space Station. I had a lot of interesting discussions amongst young professionals and students at the University of Tokyo about the research. It was a fun experience – but I would not do it again!
Space IS definitely a risky business. But the reward is higher than the risk so that’s why we take it.
Three words: Space. Is. Waiting.
We have a lot of interesting missions to do, but my personal goal is to return home with lots of fun stories.
It was 25 years ago, but I still remember the voice vividly. I got a call from Dr. Mamoru Mohri, the very first JAXA astronaut, and he said “Welcome to the Astronaut Corps.” When I got the call to be part of the Crew-1 mission, I was a lot less nervous than when I was assigned to my first mission, but the excitement remains the same.
He is a natural leader that takes care of the team really well, and he’s fun to play around with.
Star Wars… just because!
My favorite photo is Mount Fuji because I see the mountain almost every day when I was a child. It’s definitely breathtaking to see Mount Fuji from space.
I have lots of family photos, and I would put it inside my sleep station. Definitely one of the most challenging things about spaceflight is not experiencing zero gravity, not the rocket, but time away from family.
It’s an excursion. The view of the Earth is just breathtaking because you are just one glass away from the vacuum of space. There’s nothing between you and Earth.
I would say I’m most excited for interplanetary travel to become more common so that the school kids can go to Mars on their field trip.
Don’t worry, be happy!
This is definitely an exciting moment. We’re starting to see more players in the game. SpaceX is the frontrunner, but soon we’ll see Boeing, Sierra Nevada and Axiom. So the International Space Station will soon have more players involved, and it will be a lot more fun!
Thank you for your time, Soichi, and good luck on your historic mission! Get to know a bit more about Soichi and his NASA astronaut crew mates Victor Glover, Michael Hopkins, and Shannon Walker in the video above.
Make sure to follow us on Tumblr for your regular dose of space: http://nasa.tumblr.com
Throughout Women's History Month, we've been presenting profiles of the women who are leading the way in deep space exploration.
+ Meet some of them
Our Juno spacecraft made its fifth close flyby over giant Jupiter's mysterious cloud tops.
+ See the latest from the King of Planets
A routine check of the aluminum wheels on our Curiosity Mars rover has found two small breaks on the rover's left middle wheel tread--the latest sign of wear and tear as the rover continues its journey, now approaching the 10-mile (16 kilometer) mark. But there's no sign the robotic geologist won't keep roving right through its ongoing mission.
+ Get the full report
Our research reveals that volcanic activity at the giant Martian volcano Arsia Mons ceased about 50 million years ago, around the time of Earth's Cretaceous-Paleogene extinction, when large numbers of plant and animal species (including dinosaurs) went extinct. However, there's no reason to think the two events were more than a cosmic coincidence.
+ Learn how scientists pieced together the past
Images returned from the European Space Agency's Rosetta mission indicate that during its most recent trip through the inner solar system, the surface of comet 67P/Churyumov-Gerasimenko was a very active place -- full of growing fractures, collapsing cliffs and massive rolling boulders.
+ See the many faces of Comet #67P
The next rovers to explore another planet might bring along a scout. The Pop-Up Flat Folding Explorer Robot (PUFFER) in development at the Jet Propulsion Laboratory was inspired by origami. Its lightweight design is capable of flattening itself, tucking in its wheels and crawling into places rovers can't fit.
+ Meet PUFFER
According to data from our Dawn mission to Ceres, shadowed craters on the dwarf planet may be linked to the history of how the small world has been tilted over time by the gravity of planets like Jupiter.
+ Find out how understanding "cycles of obliquity" might solve solar system mysteries
We’re developing a long-term technology demonstration project of what could become the high-speed internet of the sky. The Laser Communications Relay Demonstration (LCRD) will help engineers understand the best ways to operate laser communications systems, which could enable much higher data rates for connections between spacecraft and Earth, such as scientific data downlink and astronaut communications.
+ See how it will work
We selected 10 studies to develop mission concepts using CubeSats and other kinds of very small satellites to investigate Venus, Earth's moon, asteroids, Mars and the outer planets. "These small but mighty satellites have the potential to enable transformational science," said Jim Green, director of NASA's Planetary Science Division.
+ Get the small details
It's possible that one of our closest neighbors had rings at one point -- and may have them again someday. At least, that's the theory put forth by NASA-funded scientists at Purdue University.
+ See more details about the once and future rings of Mars
Make sure to follow us on Tumblr for your regular dose of space: http://nasa.tumblr.com
Hii! I'm unsure if you've been asked this before, but I'd like to give it a shot anyway. What's the greatest legacy you hope to leave to the future generations? Whether it's one of the things you've accomplished already or are hoping to accomplish yet. Thank you very much!
Our flying observatory, called SOFIA, carries a 100-inch telescope inside a Boeing 747SP aircraft. Scientists onboard study the life cycle of stars, planets (including Pluto’s atmosphere), the area around black holes and complex molecules in space.
Heading South
Once each year our flying observatory, SOFIA, its team and instruments travel to the Southern Hemisphere to Christchurch, New Zealand. From there the team studies stars and other objects that cannot be seen while flying in the Northern Hemisphere.
What We Study
We often study star formation in our Milky Way Galaxy. But from the Southern Hemisphere we can also study the lifecycle of stars in two other galaxies called the Magellanic Clouds. The Magallenic Clouds have different materials in them, which changes how stars form in these galaxies. Scientists are studying these differences to better understand how the first stars in our universe formed.
Home Away from Home
The observatory and its team use the National Science Foundation’s U.S. Antarctic Program facility at Christchurch International Airport. The Antarctic program’s off-season is June and July, so it’s an ideal time for us to use these facilities.
Another Blast of Winter
The Southern Hemisphere’s seasons are opposite from our own. When we are operating from Christchurch in June and July, it’s winter. This means that the nights are very long – ideal for our nighttime observing flights, which last approximately 10 hours.
Light Show
These observations often bring us so far south that the team onboard can see the Southern Lights, also called the Aurora Australis. This is the Southern Hemisphere equivalent of the Northern Lights, or Aurora Borealis, visible near the North Pole. Auroras are caused by particles from space hitting the atmosphere near Earth’s magnetic poles. Our scientists onboard SOFIA don’t study the aurora, but they do enjoy the view.
Make sure to follow us on Tumblr for your regular dose of space: http://nasa.tumblr.com
Did you ever have insecurities while chasing your goal of becoming an astronaut? Were there pressures placed on you, by yourself or others, that you had to overcome? And if so, how did you overcome them? -Emma
Emma, I think everyone has insecurities about going into the unknown. The trick is not letting them get in the way. I think if you’re passionate about what you want, no amount of insecurities will keep you from it.
Tonight, Australians, Africans, Europeans, Asians and South Americans will have the opportunity to see the longest lunar eclipse of the century. Sorry North America.
Lunar eclipses occur about 2-4 times per year, when the Moon passes into the Earth’s shadow. In order to see a lunar eclipse, you must be on the night side of the Earth, facing the Moon, when the Earth passes in between the Moon and the Sun. Need help visualizing this? Here you go:
An easy way to remember the difference between a solar eclipse and a lunar eclipse is that the word ‘eclipse’ refers to the object that is being obscured. During a solar eclipse, the Moon blocks the Sun from view. During a lunar eclipse, the Earth’s shadow obscures the Moon.
You may have heard the term ‘Blood Moon’ for a lunar eclipse. When the Moon passes into the Earth’s shadow, it turns red. This happens for the exact same reason that our sunrises and sunsets here on Earth are brilliant shades of pinks and oranges. During a lunar eclipse, the only light reaching the Moon passes through the Earth’s atmosphere. The bluer, shorter wavelength light scatters and the longer wavelength red light passes through and makes it to the Moon.
"During a lunar eclipse, the temperature swing is so dramatic that it’s as if the surface of the Moon goes from being in an oven to being in a freezer in just a few hours,” said Noah Petro, project scientist for our Lunar Reconnaissance Orbiter, or LRO, at our Goddard Space Flight Center in Greenbelt, Maryland.
The Diviner team from LRO measures temperature changes on the Moon through their instrument on the spacecraft as well as through a thermal camera on Earth. How quickly or slowly the lunar surface loses heat helps scientists determine characteristics of lunar material, including its composition and physical properties.
North Americans, don’t worry. If skies are clear, you can see the next lunar eclipse on January 21, 2019. The eclipse will be visible to North Americans, South Americans, and most of Africa and Europe.
To keep an eye on the Moon with us check out nasa.gov/moon or follow us on Twitter and Facebook.
Make sure to follow us on Tumblr for your regular dose of space: http://nasa.tumblr.com.
Explore the universe and discover our home planet with the official NASA Tumblr account
1K posts