It Was A Dark And Stormy Flyby... ⁣⁣

It Was A Dark And Stormy Flyby... ⁣⁣

It was a dark and stormy flyby... ⁣⁣

Our @NASAJuno spacecraft's JunoCam captured images of the chaotic, stormy northern hemisphere of Jupiter during its 24th close pass of the giant planet on Dec. 26, 2019. Using data from the flyby, citizen scientist Kevin M. Gill created this color-enhanced image. At the time, the spacecraft was about 14,600 miles (23,500 kilometers) from the tops of Jupiter’s clouds, at a latitude of about 69 degrees north.⁣

Image Credit: Image data: NASA/JPL-Caltech/SwRI/MSSS⁣

Image processing by Kevin M. Gill, © CC BY⁣

Make sure to follow us on Tumblr for your regular dose of space: http://nasa.tumblr.com

More Posts from Nasa and Others

3 years ago
How Will The James Webb Space Telescope Change How We See The Universe? Ask An Expert!

How will the James Webb Space Telescope change how we see the universe? Ask an expert!

The James Webb Space Telescope is launching on December 22, 2021. Webb’s revolutionary technology will explore every phase of cosmic history—from within our solar system to the most distant observable galaxies in the early universe, to everything in between. Postdoctoral Research Associate Naomi Rowe-Gurney will be taking your questions about Webb and Webb science in an Answer Time session on Tuesday, December 14 from noon to 1 p.m EST here on our Tumblr!

🚨 Ask your questions now by visiting http://nasa.tumblr.com/ask.

Dr. Naomi Rowe-Gurney recently completed her PhD at the University of Leicester and is now working at NASA Goddard Space Flight Center as a postdoc through Howard University. As a planetary scientist for the James Webb Space Telescope, she’s an expert on the atmospheres of the ice giants in our solar system — Uranus and Neptune — and how the Webb telescope will be able to learn more about them.

How Will The James Webb Space Telescope Change How We See The Universe? Ask An Expert!

The James Webb Space Telescope – fun facts:

Webb is so big it has to fold origami-style to fit into its rocket and will unfold like a “Transformer” in space.

Webb is about 100 times more powerful than the Hubble Space Telescope and designed to see the infrared, a region Hubble can only peek at.

With unprecedented sensitivity, it will peer back in time over 13.5 billion years to see the first galaxies born after the Big Bang––a part of space we’ve never seen.

It will study galaxies near and far, young and old, to understand how they evolve.

Webb will explore distant worlds and study the atmospheres of planets orbiting other stars, known as exoplanets, searching for chemical fingerprints of possible habitability.

Make sure to follow us on Tumblr for your regular dose of space!


Tags
4 years ago

First piece of Orion’s Artemis III pressure vessel arrives at NASA’s Michoud Assembly Facility in New Orleans. https://blogs.nasa.gov/artemis/2020/08/25/first-piece-of-artemis-iii-orion-delivered-to-nasa/

3 years ago
Our Universe Is FULL Of Strange And Surprising Things.

Our universe is FULL of strange and surprising things.

And luckily, our Hubble Space Telescope is there to be our window to the unimaginable! Hubble recently ran into an issue with its payload computer which controls and coordinates science instruments onboard the spacecraft. On July 16, teams successfully switched to backup hardware to compensate for the problem! A day later, the telescope resumed normal science operations. To celebrate, we’re taking you back to 2016 when our dear Hubble captured perhaps one of the most intriguing objects in our Milky Way galaxy: a massive star trapped inside a bubble! The star inside this Bubble Nebula burns a million times brighter than our Sun and produces powerful gaseous outflows that howl at more than four million miles per hour. Based on the rate the star is expending energy, scientists estimate in 10 to 20 million years it will explode as a supernova. And the bubble will succumb to a common fate: It’ll pop.


Tags
9 years ago

Five Orion Technologies That Will Help Us Get Home From Mars

Orion is a key piece of NASA’s journey to Mars. The spacecraft, which was first tested in space last year, will enable crew to travel to deep space on the journey to the Red Planet and bring astronauts home safely. It’s a critical technology we’ll use to help NASA test, demonstrate and hone the skills and capabilities we need to operate farther and farther away from Earth.

image

Environmental Control and Life Support Systems

Water. Air. A temperate environment. A bathroom. These are some of the things astronauts need to survive the long journey back to Earth from Mars. NASA has developed an environmental control and life support system on the International Space Station and is designing such a system for Orion. The system can recycle carbon dioxide and make it back into useable air and process urine to make it into potable water, for example. Right now on the space station, engineers and astronauts are testing a filtering system for efficiency and reliability on long-duration missions. The investigation uses an amine-based chemical compound combined with the vacuum of space to filter and renew cabin air for breathing. When astronauts travel home from Mars, they won’t be able to count on the arrival of spare parts or extra supplies if something breaks or gets depleted, so engineers are hard at work developing reliable and robust technologies to keep crews alive and healthy in space.

image

Radiation protection

Astronauts traveling to and from Mars will be far away from the protective shield of Earth’s atmosphere and magnetic field, and their spacecraft and its systems will need to be able to protect against the full spectrum of space radiation. NASA is working now to develop protective methods.  

Orion will use items already on board to protect the crew and create a temporary shelter in the aft bay of the spacecraft, which is the inside portion closest to the heat shield. This location minimizes the amount of equipment to move around while maximizing the amount of material that can be placed between the crew and the outside environment. The items that will be used include supplies, equipment and launch and re-entry seats as well as water and food. By using the items already on board, the astronauts benefit from additional shielding without adding to Orion’s mass.

image

Power and Propulsion

A spacecraft needs power and propulsion in space to refine its trajectory during the trip back to Earth. Orion will include a service module capable of helping the spacecraft make any necessary mid-course corrections. A service module provides power, heat rejection, in-space propulsion and water and air for crews, and NASA is working with ESA (European Space Agency) to provide Orion’s service module for its next mission in a partnership that will also bring international cooperation on the journey to Mars. The service module will provide propulsion, batteries and solar arrays to generate power and contain all the air, nitrogen and water for crews.

The ESA-provided element brings together new technology and lightweight materials while also taking advantage of spaceflight-proven hardware. For example, ESA is modeling several key components – like the solar arrays – from technology developed for its Automated Transfer Vehicle-series of cargo vessels, which delivered thousands of pounds of supplies to the space station during five missions between 2008 and 2015. NASA is providing ESA one of the Orbital Maneuvering System pods that allowed space shuttles to move in space to be upgraded and integrated into the service module.

image

Heat shield

When an uncrewed Orion was tested in space in 2014, the heat shield withstood temperatures of about 4,000 degrees Fahrenheit, or about twice as hot as molten lava. That heat was generated when the spacecraft, traveling at about 20,000 mph back toward our planet, made its way through Earth’s atmosphere, which acts as a braking mechanism to cause friction and slow down a returning spacecraft. Its speed was about 80 percent of what Orion will experience when it comes back from missions near the moon and will need to be even more robust for missions where return speeds, and therefore reentry temperatures, are higher.

Orion’s heat shield is built around a titanium skeleton and carbon fiber skin that provide structural support. A honeycomb structure fits over the skin with thousands of cells that are filled with a material called Avcoat. That layer is 1.6 inches at its thickest and erodes as Orion travels through Earth’s atmosphere.

image

Parachutes

A spacecraft bringing crews back to Earth after a long trip to Mars will need a parachute system to help it slow down from its high-speed reentry through the atmosphere to a relatively slow speed for splashdown in the ocean. While Earth’s atmosphere will initially slow Orion down from thousands of miles per hour to about 325 mph, its 11 parachutes will deploy in precise sequence to further slow the capsule’s descent. There are three forward bay cover parachutes that pull a protective cover off the top of the capsule, two drogue parachutes that deploy to stabilize the spacecraft, and three pilot parachutes that are used to pull out Orion’s three orange and white main parachutes that are charged with slowing the spacecraft to its final landing speed. The main parachutes are so big that the three of them together nearly cover an entire football field.

Engineers are currently building the Orion spacecraft that will launch on the world’s most powerful rocket, the Space Launch System, and will enable astronauts to travel farther into space than ever before on the journey to Mars.

Visit NASA on the Web for more information about Orion and NASA’s journey to Mars. http://www.nasa.gov/orion 

1 year ago

Do you guys (everyone at mission control) have inside jokes?

What is the best about being mission control?

As someone who's about to go to college to hopefully be astronaut if everything goes to plan. What is some good advice you wish someone told you?


Tags
9 years ago
Happy “Back To The Future Day”!

Happy “Back to the Future Day”!

Find out more about @nasa​‘s real journey to Mars:

https://www.nasa.gov/journeytomars

9 years ago

Solar System: Things to Know This Week

Our solar system is huge, so let us break it down for you. Here are five things you need to know this week:

1. The Lure of the Rings

image

Scientists and stargazers alike can’t resist the call of Saturn’s rings, or of its moon Titan. Both have been under close scrutiny by the Cassini spacecraft lately, and there are striking new pictures to prove it. Check out the latest images HERE.

2. A New Moon Rises

image

The Lunar Reconnaissance Orbiter has captured dramatic landscapes on the moon for more than six years. “A New Moon Rises,” now on display at the Smithsonian National Air and Space Museum in Washington, DC, showcases those images ranging from Apollo landing sites to mountains that rise out of the darkness of the lunar poles. See an online version of the exhibit HERE.  

3. Around the (Giant) World in (Just Under) 88 Days

image

The Juno mission is closing in on Jupiter. On July 4, the spacecraft enters orbit around the king of planets. Learn more about Juno HERE.

4. Spiders and Volcanoes and Glaciers, Oh My

image

The more data that New Horizons spacecraft sends down about Pluto and its moons, the more there is to fascinate explorers, from spider-shaped canyons to signs of glacial flow. Take a peek at the new finds on Pluto HERE.

5. World of Wonders

image

Hexagonal craters, mysterious mountains, eye-catching bright patches — the dwarf planet Ceres is proving to be an intriguing place. The Dawn mission is looking for clues to how it works. See the latest from Ceres HERE.

Want to learn more? Read our full list of the 10 things to know this week about the solar system HERE.

Make sure to follow us on Tumblr for your regular dose of space: http://nasa.tumblr.com


Tags
5 years ago

How Do You Solve a Problem Like Dark Energy?

image

Here’s the deal — the universe is expanding. Not only that, but it’s expanding faster and faster due to the presence of a mysterious substance scientists have named “dark energy.”

But before we get to dark energy, let’s first talk a bit about the expanding cosmos. It started with the big bang — when the universe started expanding from a hot, dense state about 13.8 billion years ago. Our universe has been getting bigger and bigger ever since. Nearly every galaxy we look at is zipping away from us, caught up in that expansion!

image

The expansion, though, is even weirder than you might imagine. Things aren’t actually moving away from each other. Instead, the space between them is getting larger.

Imagine that you and a friend were standing next to each other. Just standing there, but the floor between you was growing. You two aren’t technically moving, but you see each other moving away. That’s what’s happening with the galaxies (and everything else) in our cosmos ... in ALL directions!

image

Astronomers expected the expansion to slow down over time. Why? In a word: gravity. Anything that has mass or energy has gravity, and gravity tries to pull stuff together. Plus, it works over the longest distances. Even you, reading this, exert a gravitational tug on the farthest galaxy in the universe! It’s a tiny tug, but a tug nonetheless.

As the space between galaxies grows, gravity is trying to tug the galaxies back together — which should slow down the expansion. So, if we measure the distance of faraway galaxies over time, we should be able to detect if the universe's growth rate slows down.  

image

But in 1998, a group of astronomers measured the distance and velocity of a number of galaxies using bright, exploding stars as their “yardstick.” They found out that the expansion was getting faster.

Not slowing down.

Speeding up.

image

⬆️ This graphic illustrates the history of our expanding universe. We do see some slowing down of the expansion (the uphill part of the graph, where the roller coaster is slowing down). However, at some point, dark energy overtakes gravity and the expansion speeds up (the downhill on the graph). It’s like our universe is on a giant roller coaster ride, but we’re not sure how steep the hill is!

image

Other researchers also started looking for signs of accelerated expansion. And they found it — everywhere. They saw it when they looked at individual stars. They saw it in large scale structures of the universe, like galaxies, galaxy groups and clusters. They even saw it when they looked at the cosmic microwave background (that’s what’s in this image), a "baby picture" of the universe from just a few hundred thousand years after the big bang.

If you thought the roller coaster was wild, hold on because things are about to get really weird.

Clearly, we were missing something. Gravity wasn’t the biggest influence on matter and energy across the largest scales of the universe. Something else was. The name we’ve given to that “something else” is dark energy.

image

We don’t know exactly what dark energy is, and we’ve never detected it directly. But we do know there is a lot of it. A lot. If you summed up all the “stuff” in the universe — normal matter (the stuff we can touch or observe directly), dark matter, and dark energy — dark energy would make up more than two-thirds of what is out there.

That’s a lot of our universe to have escaped detection!

Researchers have come up with a few dark energy possibilities. Einstein discarded an idea from his theory of general relativity about an intrinsic property of space itself. It could be that this bit of theory got dark energy right after all. Perhaps instead there is some strange kind of energy-fluid that fills space. It could even be that we need to tweak Einstein’s theory of gravity to work at the largest scales.  

We’ll have to stay tuned as researchers work this out.

image

Our Wide Field Infrared Survey Telescope (WFIRST) — planned to launch in the mid-2020s — will be helping with the task of unraveling the mystery of dark energy. WFIRST will map the structure and distribution of matter throughout the cosmos and across cosmic time. It will also map the universe’s expansion and study galaxies from when the universe was a wee 2-billion-year-old up to today. Using these new data, researchers will learn more than we’ve ever known about dark energy. Perhaps even cracking open the case!

You can find out more about the history of dark energy and how a number of different pieces of observational evidence led to its discovery in our Cosmic Times series. And keep an eye on WFIRST to see how this mystery unfolds.

Make sure to follow us on Tumblr for your regular dose of space: http://nasa.tumblr.com


Tags
5 years ago

Which is scarier? Launch VS re-entry?


Tags
1 year ago

how can one work in nasa? it's my dream to work in nasa someday, right now, I'm just a high schooler but I've been planning out my trajectory so some advice and tips would be helpful.


Tags
Loading...
End of content
No more pages to load
  • azumetapraline
    azumetapraline liked this · 7 months ago
  • delcisco
    delcisco liked this · 3 years ago
  • quartzbabe
    quartzbabe liked this · 4 years ago
  • nicotine-caffeine-you
    nicotine-caffeine-you reblogged this · 4 years ago
  • nicotine-caffeine-you
    nicotine-caffeine-you liked this · 4 years ago
  • makelovejoy
    makelovejoy liked this · 4 years ago
  • izumifan3
    izumifan3 liked this · 4 years ago
  • illuminatiblog
    illuminatiblog liked this · 4 years ago
  • arialis
    arialis reblogged this · 4 years ago
  • wolfsong-the-bloody-beast
    wolfsong-the-bloody-beast reblogged this · 5 years ago
  • karategomez
    karategomez liked this · 5 years ago
  • euphorion10120
    euphorion10120 liked this · 5 years ago
  • jasparnoe
    jasparnoe reblogged this · 5 years ago
  • sorayastudio
    sorayastudio liked this · 5 years ago
  • red-thorn
    red-thorn reblogged this · 5 years ago
  • frankenfossil
    frankenfossil reblogged this · 5 years ago
  • mischiefblog
    mischiefblog reblogged this · 5 years ago
  • mischiefblog
    mischiefblog liked this · 5 years ago
  • al-kitezh
    al-kitezh reblogged this · 5 years ago
  • al-kitezh
    al-kitezh liked this · 5 years ago
  • space-up-my-sleeve
    space-up-my-sleeve reblogged this · 5 years ago
  • lookskindasketchy
    lookskindasketchy reblogged this · 5 years ago
  • lookskindasketchy
    lookskindasketchy liked this · 5 years ago
  • bluerayvioletflame
    bluerayvioletflame liked this · 5 years ago
  • g8z
    g8z liked this · 5 years ago
  • extreamelyjudgmentalblogger
    extreamelyjudgmentalblogger liked this · 5 years ago
  • thedenofcaseywolfe
    thedenofcaseywolfe liked this · 5 years ago
  • chaoticgoodcurly
    chaoticgoodcurly liked this · 5 years ago
  • kansouame
    kansouame liked this · 5 years ago
  • nonsensicalsoliloquy
    nonsensicalsoliloquy liked this · 5 years ago
  • ima-acidic-bitch
    ima-acidic-bitch liked this · 5 years ago
  • onewhositswiththeturtles
    onewhositswiththeturtles reblogged this · 5 years ago
  • whitecatnatalie
    whitecatnatalie reblogged this · 5 years ago
  • whitecatnatalie
    whitecatnatalie liked this · 5 years ago
  • melancolyrequiem
    melancolyrequiem reblogged this · 5 years ago
  • vjonk
    vjonk liked this · 5 years ago
  • shadowpixiejewels
    shadowpixiejewels liked this · 5 years ago
  • kungpowpipis
    kungpowpipis liked this · 5 years ago
  • all-too-human-storiesxd
    all-too-human-storiesxd reblogged this · 5 years ago
  • vhenadahls
    vhenadahls reblogged this · 5 years ago
nasa - NASA
NASA

Explore the universe and discover our home planet with the official NASA Tumblr account

1K posts

Explore Tumblr Blog
Search Through Tumblr Tags