Did you ever wonder how we spots asteroids that may be getting too close to Earth for comfort? Wonder no more. Our Planetary Defense Coordination Office does just that. Thanks to a variety of ground and space based telescopes, we’re able to detect potentially hazardous objects so we can prepare for the unlikely threat against our planet.
Near-Earth objects (NEOs) are asteroids and comets that orbit the Sun, but their orbits bring them into Earth’s neighborhood – within 30 million miles of Earth’s orbit.
These objects are relatively unchanged remnant debris from the solar system’s formation some 4.6 billion years ago. Most of the rocky asteroids originally formed in the warmer inner solar system between the orbits of Mars and Jupiter, while comets, composed mostly of water ice with embedded dust particles, formed in the cold outer solar system.
Our Near-Earth Object (NEO) Observations Program finds, tracks and monitors near-Earth asteroids and comets. Astronomers supported by the program use telescopes to follow up the discoveries to make additional measurements, as do many observatories all over the world. The Center for Near-Earth Object Studies, based at our Jet Propulsion Laboratory, also uses these data to calculate high-precision orbits for all known near-Earth objects and predict future close approaches by them to Earth, as well as the potential for any future impacts.
Scientists determine the orbit of an asteroid by comparing measurements of its position as it moves across the sky to the predictions of a computer model of its orbit around the Sun. The more observations that are used and the longer the period over which those observations are made, the more accurate the calculated orbit and the predictions that can be made from it.
At the start of 2019, the number of discovered NEOs totaled more than 19,000, and it has since surpassed 20,000. An average of 30 new discoveries are added each week. More than 95 percent of these objects were discovered by NASA-funded surveys since 1998, when we initially established its NEO Observations Program and began tracking and cataloguing them.
Currently the risk of an asteroid striking Earth is exceedingly low, but we are constantly monitoring our cosmic neighborhood. Have more questions? Visit our Planetary Defense page to explore how we keep track of near-Earth objects.
Make sure to follow us on Tumblr for your regular dose of space: http://nasa.tumblr.com.
Did you know we help farmers grow some of your favorite fruits, veggies and grains?
Our Earth-observing satellites track rainfall amounts, soil moisture, crop health, and more. On the ground, we partner with agencies and organizations around the world to help farmers use that data to care for their fields.
Here are a few ways we help put food on the table, from planting to harvest.
Did you plant seeds in science class to watch them sprout and grow? They all needed water, right? Our data helps farmers “see” how moist the soil is across large fields.
“When you’re not sure when to water your flowers or your garden, you can look at the soil or touch it with your hands. We are sort of ‘feeling’ the soil, sensing how much water is in the soil – from a satellite,
685 kilometers (408 miles) above Earth,” said John Bolten, the associate program manager of water resources for NASA’s Applied Sciences Program.
This spring, we worked with the U.S. Department of Agriculture and George Mason University to release Crop-CASMA, a tool that shows soil moisture and vegetation conditions for the United States. Able to see smaller areas – about the size of a couple of golf courses – the USDA uses Crop-CASMA to help update farmers on their state’s soil moisture, crop health and growing progress.
It’s dangerous being a seedling.
Heavy spring rains or summer storms can flood fields and drown growing plants. Dry spells and droughts can starve them of nutrients. Insects and hail can damage them. Farmers need to keep a close eye on plants during the spring and summer months. Our data and programs help them do that.
For example, in California, irrigation is essential for agriculture. California’s Central Valley annually produces more than 250 types of crops and is one of the most productive agricultural regions in the country – but it’s dry. Some parts only get 6 inches of rain per year.
To help, Landsat data powers CropManage – an app that tells farmers how long to irrigate their fields, based on soil conditions and evapotranspiration, or how much water plants are releasing into the atmosphere. The warmer and drier the atmosphere, the more plants “sweat” and lose water that needs to be replenished. Knowing how long to irrigate helps farmers conserve water and be more efficient. In years like 2021, intense droughts can make water management especially critical.
Harvest
Leading up to harvest, farmers need to know their expected yields – and profits.
GEOGLAM, or the Group on Earth Observations Global Agricultural Monitoring Initiative, is a partnership between NASA Harvest, USDA’s Foreign Agricultural Service (FAS) and other global agencies to track and report on crop conditions around the world.
USDA FAS is one of the main users of a soil moisture measurement product developed by Bolten and his team at our NASA Goddard Space Flight Center to drive their crop forecasting system.
If you’re interested in more ways we support agriculture, stay tuned over the next few weeks to learn more about how satellites (and scientists) help put snacks on your table!
Make sure to follow us on Tumblr for your regular dose of space!
Astronauts onboard the International Space station are typically active for at least 9 1/2 hours per day doing science, exercising and maintaining systems. Excluding scheduled time for sleep and lunch, astronauts have only 4 hours of free time during the work week, and that includes time for meals and general hygiene.
Even with a loaded calendar, the few who have such an opportunity to live in the microgravity environment find ways to make the most of this experience. Here are just a few of their favorite things about living in space:
Flying
One of the most self-explanatory (and most fun!) aspects of living in space for the astronauts is “flying”. In space there is no up or down, so there is no floor or ceiling. There are rails throughout the space station that astronauts use to push themselves among the modules.
Eating
Astronauts actually describe the food on the space station as quite tasty! In part, that’s because they have a large role in choosing their own meals. Over time though, a lot of astronauts experience desensitized taste buds from the shifting fluid to their head. Toward the end of their expedition, spicy foods tend to be their favorites because of this phenomenon.
Drinking
Liquid behaves very differently in space than it does on Earth. Astronauts cannot simply pour a cup of coffee into a mug. Without gravity, it would stick to the walls of the cup and would be very difficult to sip. Most of the time, astronauts fill a bag with liquid and use a special straw with a clamp to keep the contents from flying out.
Playing Games
The space station crew occasionally gets downtime which they can spend however they please. Sometimes they watch a movie, read a book or take photos of Earth from the Cupola windows. Other times they invent games to play with each other, and each crew tends to come up with new games. Sometimes it can be hitting a target, flying from one end of the station to the other fastest or playing zero-gravity sports.
Going Out For A Walk
Preparing and executing a spacewalk can take around 8 to 12 hours, and can be a jam-packed schedule. Spacewalkers have to be focused on the task at hand and sticking to the timeline. That said, they can still catch a spare moment to see the Earth 250 miles below. Many astronauts describe that view from a spacewalk as one of the most beautiful sights in their lives.
Watch Commander Scott Kelly and Flight Engineer Kjell Lindgren perform a spacewalk on Oct. 28 at 8:15 a.m. EDT live on NASA Television.
Make sure to follow us on Tumblr for your regular dose of space: http://nasa.tumblr.com
Our pale blue dot, planet Earth, is seen in this video captured by NASA astronaut Jack Fischer from his unique vantage point on the International Space Station. From 250 miles above our home planet, this time-lapse imagery takes us over the Pacific Ocean’s moon glint and above the night lights of San Francisco, CA. The thin hue of our atmosphere is visible surrounding our planet with a majestic white layer of clouds sporadically seen underneath.
The International Space Station is currently home to 6 people who are living and working in microgravity. As it orbits our planet at 17,500 miles per hour, the crew onboard is conducting important research that benefits life here on Earth.
Make sure to follow us on Tumblr for your regular dose of space: http://nasa.tumblr.com
You seem to have spent a lot of time in some pretty isolated locations during your career, what are some challenges to that? Was there anything you enjoyed about it?
Check out features of our feline friends that have come to life as interstellar phenomena!
Pictured first, the Cat’s Paw Nebula is located about 4,200-5,500 light-years from Earth – situated in our very own Milky Way Galaxy. It was named for the large, round features that create the impression of a feline footprint and was captured by our Spitzer Space Telescope. After gas and dust inside the nebula collapse to form stars, the stars may in turn heat up the pressurized gas surrounding them. This process causes the gas to expand into space and form the bright red bubbles you see. The green areas show places where radiation from hot stars collided with large molecules called "polycyclic aromatic hydrocarbons," causing them to fluoresce.
Next, you’ll find the Cat’s Eye Nebula. Residing 3,000 light-years from Earth, the Cat’s Eye represents a brief, yet glorious, phase in the life of a sun-like star. This nebula's dying central star may have produced the simple, outer pattern of dusty concentric shells by shrugging off outer layers in a series of regular convulsions. To create this view, Hubble Space Telescope archival image data have been reprocessed. Compared to well-known Hubble pictures, the alternative processing strives to sharpen and improve the visibility of details in light and dark areas of the nebula and also applies a more complex color palette. Gazing into the Cat's Eye, astronomers may well be seeing the fate of our sun, destined to enter its own planetary nebula phase of evolution ... in about 5 billion years.
Make sure to follow us on Tumblr for your regular dose of space: http://nasa.tumblr.com.
They are historically well known for making difficult calls and guiding the crew through "Houston, we've had a problem" situations, but in all spaceflight operations, they are ultimately responsible for the success of the mission.
We're looking for a new class of Flight Directors to join our team, and there are a few things to know.
MYTH: You have to have already been a flight controller in Mission Control at NASA to become a flight director.
FACT: Although many flight directors have previously been NASA flight controllers, that is not a prerequisite to apply. The necessary experience could come from the military, other spaceflight organizations or areas that operate in similar high-stakes conditions.
MYTH: You have to already have a special spaceship flying license to apply.
FACT: The only place to get certified is on the job at NASA. Once chosen, the new flight directors will receive training on flight control and vehicle systems, as well as operational leadership and risk management.
MYTH: All flight directors have advanced degrees like, a PhD.
FACT: While a Bachelor's degree in engineering, biological science, physical science, computer science or mathematics from an accredited university is necessary, an advanced degree is not required to become a flight director.
MYTH: Flight directors are required to have experience in the space industry.
FACT: While you need at least three years of related, progressively responsible professional experience to apply, it can come from a variety of industries as long as it represents time-critical decision-making experience in high-stress, high-risk environments.
MYTH: Only astronauts become flight directors and vice versa.
FACT: To date, only one astronaut, T.J. Creamer, has become a flight director, and no flight directors have become astronauts. However, members of the flight controller teams have become astronauts. The "capsule communicator," or CAPCOM, role in Mission Control is more often filled by astronauts because the CAPCOM is the one responsible for relaying the flight director's decisions to the astronauts in space.
Applicants must meet the following minimum requirements before submitting an application:
Be a U.S. citizen.
Have a Bachelor's degree from an accredited institution in engineering, biological science, physical science, computer science or math.
Have at least three years of related, progressively responsible professional experience.
Applications for our next Flight Director class open on Dec. 3, 2021 and close Dec. 16, 2021! Visit: go.nasa.gov/FlightDirector
Learn more about what Flight Directors do with our Everything About Mission Control Houston video featuring Flight Director Mary Lawrence!
Make sure to follow us on Tumblr for your regular dose of space: http://nasa.tumblr.com
One hundred years ago a total solar eclipse turned an obscure scientist into a household name. You might have heard of him — his name is Albert Einstein. But how did a solar eclipse propel him to fame?
First, it would be good to know a couple things about general relativity. (Wait, don’t go! We’ll keep this to the basics!)
A decade before he finished general relativity, Einstein published his special theory of relativity, which demonstrates how space and time are interwoven as a single structure he dubbed “space-time.” General relativity extended the foundation of special relativity to include gravity. Einstein realized that gravitational fields can be understood as bends and curves in space-time that affect the motions of objects including stars, planets — and even light.
For everyday situations the centuries-old description of gravity by Isaac Newton does just fine. However, general relativity must be accounted for when we study places with strong gravity, like black holes or neutron stars, or when we need very precise measurements, like pinpointing a position on Earth to within a few feet. That makes it hard to test!
A prediction of general relativity is that light passing by an object feels a slight "tug", causing the light's path to bend slightly. The more mass the object has, the more the light will be deflected. This sets up one of the tests that Einstein suggested — measuring how starlight bends around the Sun, the strongest source of gravity in our neighborhood. Starlight that passes near the edge of the Sun on its way to Earth is deflected, altering by a small amount where those stars appear to be. How much? By about the width of a dime if you saw it at a mile and a quarter away! But how can you observe faint stars near the brilliant Sun? During a total solar eclipse!
That’s where the May 29, 1919, total solar eclipse comes in. Two teams were dispatched to locations in the path of totality — the places on Earth where the Moon will appear to completely cover the face of the Sun during an eclipse. One team went to South America and another to Africa.
On eclipse day, the sky vexed both teams, with rain in Africa and clouds in South America. The teams had only mere minutes of totality during which to take their photographs, or they would lose the opportunity until the next total solar eclipse in 1921! However, the weather cleared at both sites long enough for the teams to take images of the stars during totality.
The teams took two sets of photographs of the same patch of sky – one set during the eclipse and another set a few months before or after, when the Sun was out of the way. By comparing these two sets of photographs, researchers could see if the apparent star positions changed as predicted by Einstein. This is shown with the effect exaggerated in the image above.
A few months after the eclipse, when the teams sorted out their measurements, the results demonstrated that general relativity correctly predicted the positions of the stars. Newspapers across the globe announced that the controversial theory was proven (even though that’s not quite how science works). It was this success that propelled Einstein into the public eye.
The solar eclipse wasn’t the first test of general relativity. For more than two centuries, astronomers had known that Mercury’s orbit was a little off. Its perihelion — the point during its orbit when it is closest to the Sun — was changing faster than Newton’s laws predicted. General relativity easily explains it, though, because Mercury is so close to the Sun that its orbit is affected by the Sun’s dent in space-time, causing the discrepancy.
In fact, we still test general relativity today under different conditions and in different situations to see whether or not it holds up. So far, it has passed every test we’ve thrown at it.
Curious to know where we need general relativity to understand objects in space? Tune into our Tumblr tomorrow to find out!
You can also read more about how our understanding of the universe has changed during the past 100 years, from Einstein's formulation of gravity through the discovery of dark energy in our Cosmic Times newspaper series.
Make sure to follow us on Tumblr for your regular dose of space: http://nasa.tumblr.com.
On June 24, 2020, NASA announced the agency’s headquarters building in Washington, D.C., was to be named after Mary W. Jackson to celebrate her life and legacy. We collaborated with Events DC to create artwork inspired by Jackson’s story as the agency’s first Black female engineer.
Take a look at how six local female artists interpreted Jackson’s place in history through their individual creative lenses.
“To see Mary [W.] Jackson be so successful and to get the recognition that she deserves, it hits home for me in a couple ways.”
Tenbeete Solomon AKA Trap Bob is a visual artist, illustrator, and animator based in Washington, D.C.
“Art is so important across the board because it’s really a form of documentation,” says Trap Bob. “It’s creating a form of a history… that’s coming from the true essence of what people feel in the communities.”
“People can relate to things that may seem foreign to them through imagery.”
Jamilla Okubo is an interdisciplinary artist exploring the intricacies of belonging to an American, Kenyan, and Trinidadian identity.
“I wanted to create a piece that represented and celebrated and honored Mary [W.] Jackson, to remember the work that she did,” says Okubo.
“This is a figure who actually looks like us, represents us.”
Tracie Ching is an artist and self-taught illustrator working in Washington, D.C.
“The heroes and the figures that we had presented to us as kids didn’t ever look like me or my friends or the vast majority of the people around me,” says Ching.
"To be even a Black artist making artwork about space — it’s because of her triumphs and her legacy that she left behind.”
Jennifer White-Johnson is an Afro-Latina, disabled designer, educator, and activist whose work explores the intersection of content and caregiving with an emphasis on redesigning ableist visual culture.
“My piece is… a take on autistic joy because my son is autistic," says White-Johnson. "And I really just wanted to show him… in a space where we often don’t see Black disabled kids being amplified.”
“In my art, I try to highlight really strong and empowering women."
Julia Chon, better known by her moniker “Kimchi Juice,” is a Washington, D.C.-based artist and muralist.
“As minority women, we are too often overlooked and under recognized for the work and time that we give," says Kimchi Juice. "And so to see Mary W. Jackson finally being given this recognition is fulfilling to me.”
“I wanted when one listens to it, to feel like there is no limit.”
OG Lullabies is a Washington D.C. songwriter, multi-instrumentalist, including violin and electronics.
“When you look back at history… art is the color or the sound in the emotions that encapsulated the moment,” says OG Lullabies. “It’s the real human experience that happens as time passes.”
Make sure to follow us on Tumblr for your regular dose of space: http://nasa.tumblr.com.
“At a glacial pace” used to mean moving so slowly the movement is almost imperceptible. Lately though, glaciers are moving faster. Ice on land is melting and flowing, sending water to the oceans, where it raises sea levels.
In 2018, we launched the Ice, Cloud and Land Elevation Satellite-2 (ICESat-2) to continue a global record of ice elevation. Now, the results are in. Using millions of measurements from a laser in space and quite a bit of math, researchers have confirmed that Earth is rapidly losing ice.
ICESat-2 was a follow-up mission to the original ICESat, which launched in 2003 and took measurements until 2009. Comparing the two records tells us how much ice sheets have melted over 16 years.
During those 16 years, melting ice from Antarctica and Greenland was responsible for just over a half-inch of sea level rise. When ice on land melts, it eventually finds its way to the ocean. The rapid melt at the poles is no exception.
One gigaton of ice holds enough water to fill 400,000 Olympic swimming pools. It’s also enough ice to cover Central Park in New York in more than 1,000 feet of ice.
Between 2003 and 2019, Greenland lost 200 gigatons of ice per year. That’s 80 million Olympic swimming pools reaching the ocean every year, just from Greenland alone.
During the same time period, Antarctica lost 118 gigatons of ice per year. That’s another 47 million Olympic swimming pools every year. While there has been some elevation gain in the continent’s center from increased snowfall, it’s nowhere near enough to make up for how much ice is lost to the sea from coastal glaciers.
ICESat-2 sends out 10,000 pulses of laser light a second down to Earth’s surface and times how long it takes them to return to the satellite, down to a billionth of a second. That’s how we get such precise measurements of height and changing elevation.
These numbers confirm what scientists have been finding in most previous studies and continue a long record of data showing how Earth’s polar ice is melting. ICESat-2 is a key tool in our toolbox to track how our planet is changing.
Make sure to follow us on Tumblr for your regular dose of space: http://nasa.tumblr.com.
The work we do, and will continue in 2016, helps the United States maintain its world leadership in space exploration and scientific discovery. Here’s an overview of what we have planned for the coming year:
Our Journey to Mars
We’re developing the capabilities needed to send humans to an asteroid by 2025 and Mars in the 2030s. Mars is a rich destination for scientific discovery and robotic and human exploration as we expand our presence into the solar system. Its formation and evolution are comparable to Earth, helping us learn more about our own planet’s history and future.
Work and Research on the International Space Station
The International Space Station is a unique place – a convergence of science, technology and human innovation that demonstrates new technologies and makes research breakthroughs not possible on Earth. In 2016, we will continue our groundbreaking research on the orbiting laboratory.
Returning Human Spaceflight Launches to American Soil
Our Commercial Crew Program is working with the American aerospace industry as companies develop and operate a new generation of spacecraft and launch systems capable of carrying crews to low-Earth orbit and the International Space Station. Commercial transportation to and from the station will provide expanded utility, additional research time and broader opportunities of discovery on the orbiting laboratory.
Studying Our Earth Right Now
We use the vantage point of space to increase our understanding of our home planet, improve lives and safeguard our future. In 2016, we will continue to monitor Earth’s vital signs from land, air and space with a fleet of satellites and ambitious airborne and ground-based observation campaigns.
Fostering Groundbreaking Technology Development
Sustained investments in NASA technology advances our space exploration, science and aeronautics capabilities. Our technology development also supports the nation's innovation economy by creating solutions that generate tangible benefits for life on earth. In 2016, we will continue to invest in the future of innovation.
Breakthroughs in Aeronautics
Thanks to our advancements in aeronautics, today’s aviation industry is better equipped than ever to safely and efficiently transport all those passengers to their destinations. In fact, every U.S. aircraft flying today and every U.S. air traffic control tower uses NASA-developed technology in some way. In 2016, we will continue making these breakthroughs in aeronautics.
Discoveries in Our Solar System and Beyond
This year we will continue exploring our solar system and beyond to unravel the mysteries of our universe. We are looking to answer key questions about our home planet, neighboring planets in our solar system and more!
Make sure to follow us on Tumblr for your regular dose of space: http://nasa.tumblr.com
Explore the universe and discover our home planet with the official NASA Tumblr account
1K posts