What's next for NASA? In 2019, we’re once again preparing for human missions to the Moon. We're keeping the promise by developing new systems and spacecraft, making innovations in flight and technology, living and doing science on the International Space Station, and delivering images and discoveries from our home planet, our solar system and beyond.
Check out What’s Next for NASA: https://www.nasa.gov/next
Make sure to follow us on Tumblr for your regular dose of space: http://nasa.tumblr.com
solivanas: I’ve been designing a space habitat for school that rotates to provide gravity for astronauts within it. Any tips?
Students - want to modify a NASA Spinoff technology and solve a real word problem?
Our Optimus Prime Spinoff Promotion and Research Challenge, known as OPSPARC for short, is a student challenge that guides teams through various NASA Spinoff technologies that are in their everyday world. The teams use their imagination, creativity, and engineering skills to develop their own ideas for NASA spinoff technology.
Spinoffs are technologies originally created for space and modified into everyday products used here on Earth.
Perhaps the most widely recognized NASA spinoff, memory foam was invented by NASA-funded researchers looking for ways to keep test pilots cushioned during flights. Today, memory foam makes for more comfortable beds, couches and chairs, not to mention better shoes, movie theater seats and even football helmets.
There are more than two-thousand NASA Spinoffs They include memory foam, invisible braces, firefighting equipment, programmable pace makers, artificial limbs, scratch-resistant lenses, aircraft anti-icing systems, endangered species tracking software, cochlear implants, satellite television, long-distance telecommunications, and many, many more.
The deadline has been extended to February 26th for our Mission 3 student challenge. Sign up NOW here: https://opsparc.gsfc.nasa.gov/
Fans of the Hasbro TRANSFORMERS brand will pick up on the play on words between the challenge name, OPSPARC, and the "AllSpark" from the TRANSFORMERS universe. The AllSpark is what gave the TRANSFORMERS robots life and knowledge, which they use to help mankind — just like NASA spinoffs. Students from around the globe will have the opportunity to Be The Spark!
OPTIMUS PRIME and TRANSFORMERS are trademarks of Hasbro and are used with permission. © 2018 Hasbro, Inc. All Rights Reserved.
50 years ago, three Apollo astronauts rode this 363 foot tall rocket, the Saturn V, embarking on one of the greatest missions of mankind – to step foot on another world. On July 20, 1969, astronauts Buzz Aldrin, Michael Collins and Neil Armstrong made history when they arrived at the Moon. Thanks to the Saturn V rocket, we were able to complete this epic feat, returning to the lunar surface a total of six times. The six missions that landed on the Moon returned a wealth of scientific data and almost 400 kilograms of lunar samples.
In honor of this historic launch, the National Air and Space Museum is projecting the identical rocket that took our astronauts to the Moon on the Washington Monument in Washington, D.C.
This week, you can watch us salute our Apollo 50th heroes and look forward to our next giant leap for future missions to the Moon and Mars. Tune in to a special two-hour live NASA Television broadcast at 1 p.m. ET on Friday, July 19. Watch the program at www.nasa.gov/live.
Make sure to follow us on Tumblr for your regular dose of space: http://nasa.tumblr.com.
What was the most fun you had in Mission Control?
For the first time, measurements from our Earth-observing satellites are being used to help combat a potential outbreak of life-threatening cholera. Humanitarian teams in Yemen are targeting areas identified by a NASA-supported project that precisely forecasts high-risk regions based on environmental conditions observed from space.
Cholera is caused by consuming food or water contaminated with a bacterium called Vibrio cholerae.
The disease affects millions of people every year and can be deadly. It remains a major threat to global health, especially in developing countries, such as Yemen, where access to clean water is limited.
To calculate the likelihood of an outbreak, scientists run a computer model that takes satellite observations of things like rain and temperatures and combines them with information on local sanitation and clean water infrastructure. In 2017, the model achieved 92 percent accuracy in predicting the regions where cholera was most likely to occur and spread in Yemen. An outbreak that year in Yemen was the world's worst, with more than 1.1 million suspected cases and more than 2,300 deaths, according to the World Health Organization.
International humanitarian organizations took notice. In January 2018, Fergus McBean, a humanitarian adviser with the U.K.'s Department for International Development, read about the NASA-funded team's 2017 results and contacted them with an ambitious challenge: to create and implement a cholera forecasting system for Yemen, in only four months.
“It was a race against the start of rainy season,” McBean said.
The U.S. researchers began working with U.K. Aid, the U.K. Met Office, and UNICEF on the innovative approach to use the model to inform cholera risk reduction in Yemen.
In March, one month ahead of the rainy season, the U.K. international development office began using the model’s forecasts. Early results show the science team’s model predictions, coupled with Met Office weather forecasts, are helping UNICEF and other aid groups target their response to where support is needed most.
Photo Credit: UNICEF
“By joining up international expertise with those working on the ground, we have for the very first time used these sophisticated predictions to help save lives and prevent needless suffering,” said Charlotte Watts, chief scientist for United Kingdom’s Department for International Development.
Read more: go.nasa.gov/2MxKyw4
Make sure to follow us on Tumblr for your regular dose of space: http://nasa.tumblr.com.
With tumultuous winds peaking at 400 mph, the Great Red Spot has been swirling wildly over Jupiter’s skies for at least 150 years and possibly much longer. People saw a big spot on Jupiter as early as the 1600s when they started stargazing through telescopes, though it’s unclear whether they were looking at a different storm. Today, scientists know the Great Red Spot has been there for a while, but what causes its swirl of reddish hues remains to be discovered. More >
Despite its unofficial name, the Little Red Spot is about as wide as Earth. The storm reached its current size when three smaller spots collided and merged in the year 2000. More >
The planet’s rings might get most of the glory, but another shape’s been competing for attention: the hexagon. This jet stream is home to a massive hurricane tightly centered on the north pole, with an eye about 50 times larger than the average hurricane eye on Earth. Numerous small vortices spin clockwise while the hexagon and hurricane spin counterclockwise. The biggest of these vortices, seen near the lower right corner of the hexagon and appearing whitish, spans about 2,200 miles, approximately twice the size of the largest hurricane on Earth. More>
A tempest erupted in 2010, extending approximately 9,000 miles north-south large enough to eventually eat its own tail before petering out. The storm raged for 200 days, making it the longest-lasting, planet-encircling storm ever seen on Saturn. More >
Better cover your eyes. Dust storms are a frequent guest on the Red Planet, but one dust storm in 2001 larger by far than any seen on Earth raised a cloud of dust that engulfed the entire planet for three months. As the Sun warmed the airborne dust, the upper atmospheric temperature rose by about 80 degrees Fahrenheit. More >
Several large, dark spots on Neptune are similar to Jupiter’s hurricane-like storms. The largest spot, named the “Great Dark Spot” by its discoverers, contains a storm big enough for Earth to fit neatly inside. And, it looks to be an anticyclone similar to Jupiter’s Great Red Spot. More >
Not to be confused with Earth’s tornadoes, a stalk-like prominence rose up above the Sun, then split into about four strands that twisted themselves into a knot and dispersed over a two-hour period. This close-up shows the effect is one of airy gracefulness. More >
The storm blew across the equatorial region of Titan, creating large effects in the form of dark and likely “wet” from liquid hydrocarbons areas on the surface of the moon. The part of the storm visible here measures 750 miles in length east-to-west. The wings of the storm that trail off to the northwest and southwest from the easternmost point of the storm are each 930 miles long. More >
On March 9, 1989, a huge cloud of solar material exploded from the sun, twisting toward Earth. When this cloud of magnetized solar material called a coronal mass ejection reached our planet, it set off a chain of events in near-Earth space that ultimately knocked out an entire power grid area to the Canadian province Quebec for nine hours. More >
Back on Earth, Typhoon Tip of 1979 remains the biggest storm to ever hit our planet, making landfall in Japan. The tropical cyclone saw sustained winds peak at 190 mph and the diameter of circulation spanned approximately 1,380 miles. Fortunately, we now have plans to better predict future storms on Earth. NASA recently launched a new fleet of hurricane-tracking satellites, known as the Cyclone Global Navigation Satellite System (CYGNSS), which will use the same GPS technology you and I use in our cars to measure wind speed and ultimately improve how to track and forecast hurricanes. More >
Make sure to follow us on Tumblr for your regular dose of space: http://nasa.tumblr.com
Michael S. Hopkins was selected by NASA as an astronaut in 2009. The Missouri native is currently the Crew-1 mission commander for NASA’s next SpaceX launch to the International Space Station on Nov. 14, 2020. Hopkin’s Crew-1 mission will mark the first-ever crew rotation flight of a U.S. commercial spacecraft with astronauts on board, and it secures the U.S.’s ability to launch humans into space from American soil once again. Previously, Hopkins was member of the Expedition 37/38 crew and has logged 166 days in space. During his stay aboard the station, he conducted two spacewalks totaling 12 hours and 58 minutes to change out a degraded pump module. He holds a Bachelor of Science in Aerospace Engineering from the University of Illinois and a Master of Science in Aerospace Engineering.
He took some time from being a NASA astronaut to answer questions about his life and career! Enjoy:
I hope people are thinking about the fact that we’re starting a new era in human spaceflight. We’re re-opening human launch capability to U.S. soil again, but it’s not just that. We’re opening low-Earth orbit and the International Space Station with commercial companies. It’s a lot different than what we’ve done in the past. I hope people realize this isn’t just another launch – this is something a lot bigger. Hopefully it’s setting the stage, one of those first steps to getting us to the Moon and on to Mars.
First off, just like being an astronaut, it involves a lot of training when you first get started. I went to the U.S. Air Force Test Pilot School and spent a year in training and just learning how to be a flight test engineer. It was one of the most challenging years I’ve ever had, but also one of the more rewarding years. What it means afterwards is, you are basically testing new vehicles or new systems that are going on aircraft. You are testing them before they get handed over to the operational fleet and squadrons. You want to make sure that these capabilities are safe, and that they meet requirements. As a flight test engineer, I would help design the test. I would then get the opportunity to go and fly and execute the test and collect the data, then do the analysis, then write the final reports and give those conclusions on whether this particular vehicle or system was ready to go.
A common theme for me is to just have patience. Enjoy the ride along the way. I think I tend to be pretty high intensity on things and looking back, I think things happen when they’re supposed to happen, and sometimes that doesn’t necessarily agree with when you think it should happen. So for me, someone saying, “Just be patient Mike, it’s all going to happen when it’s supposed to,” would be really good advice.
There’s a lot of experiments I had the opportunity to participate in, but the ones in particular I liked were ones where I got to interact directly with the folks that designed the experiment. One thing I enjoyed was a fluid experiment called Capillary Flow Experiment, or CFE. I got to work directly with the principal investigators on the ground as I executed that experiment. What made it nice was getting to hear their excitement as you were letting them know what was happening in real time and getting to hear their voices as they got excited about the results. It’s just a lot of fun.
I think most of us when we think about whatever it is we do, we don’t think of it in those terms. Space is risky, yes, but there’s a lot of other risky jobs out there. Whether it’s in the military, farming, jobs that involve heavy machinery or dangerous equipment… there’s all kinds of jobs that entail risk. Why do it? You do it because it appeals to you. You do it because it’s what gets you excited. It just feels right. We all have to go through a point in our lives where we figure out what we want to do and what we want to be. Sometimes we have to make decisions based on factors that maybe wouldn’t lead you down that choice if you had everything that you wanted, but in this particular case for me, it’s exactly where I want to be. From a risk standpoint, I don’t think of it in those terms.
There are many facets to Soichi Noguchi. I’m thinking about the movie Shrek. He has many layers! He’s very talented. He’s very well-thought. He’s very funny. He’s very caring. He’s very sensitive to other people’s needs and desires. He’s a dedicated family man. I could go on and on and on… so maybe like an onion – full of layers!
I love them both. But can I say Firefly? There’s a TV series out there called Firefly. It lasted one season – kind of a space cowboy-type show. They did have a movie, Serenity, that was made as well. But anyway, I love both Star Wars and Star Trek. We’ve really enjoyed The Mandalorian. I mean who doesn’t love Baby Yoda right? It’s all fun.
I tried four times over the course of 13 years. My first three attempts, I didn’t even have references checked or interviews or anything. Remember what we talked about earlier, about patience? For my fourth attempt, the fact is, it happened when it was supposed to happen. I didn’t realize it at the time. I would have loved to have been picked on my first attempt like anybody would think, but at the same time, because I didn’t get picked right away, my family had some amazing experiences throughout my Air Force career. That includes living in Canada, living overseas in Italy, and having an opportunity to work at the Pentagon. All of those helped shape me and grow my experience in ways that I think helped me be a better astronaut.
One of my favorite pictures was a picture inside the station at night when all of the lights were out. You can see the glow of all of the little LEDs and computers and things that stay on even when you turn off the overhead lights. You see this glow on station. It’s really one of my favorite times because the picture doesn’t capture it all. I wish you could hear it as well. I like to think of the station in some sense as being alive. It’s at that time of night when everybody else is in their crew quarters in bed and the lights are out that you feel it. You feel the rhythm, you feel the heartbeat of the station, you see it in the glow of those lights – that heartbeat is what’s keeping you alive while you’re up there. That picture goes a small way of trying to capture that, but I think it’s a special time from up there.
My wedding bands. I’m also taking up pilot wings for my son. He wants to be a pilot so if he succeeds with that, I’ll be able to give him his pilot wings. Last time, I took one of the Purple Hearts of a very close friend. He was a Marine in World War II who earned it after his service in the Pacific.
Thank you for your time, Mike, and good luck on your historic mission! Get to know a bit more about Mike and his Crew-1 crew mates Victor Glover, Soichi Noguchi, and Shannon Walker in the video above.
Make sure to follow us on Tumblr for your regular dose of space: http://nasa.tumblr.com
Our leadership hit the road to visit our commercial partners Lockheed Martin, Sierra Nevada Corp. and Ball Aerospace in Colorado. They were able to check the status of flight hardware, mission operations and even test virtual reality simulations that help these companies build spacecraft parts.
Let’s take a look at all the cool technology they got to see…
Lockheed Martin is the prime contractor building our Orion crew vehicle, the only spacecraft designed to take humans into deep space farther than they’ve ever gone before.
Acting NASA Deputy Administrator Lesa Roe and Acting NASA Administrator Robert Lightfoot are seen inside the CHIL…the Collaborative Human Immersive Laboratory at Lockheed Martin Space Systems in Littleton, Colo. Lockheed Martin’s CHIL enables collaboration between spacecraft design and manufacturing teams before physically producing hardware.
Cool shades! The ability to visualize engineering designs in virtual reality offers tremendous savings in time and money compared to using physical prototypes. Technicians can practice how to assemble and install components, the shop floor can validate tooling and work platform designs, and engineers can visualize performance characteristics like thermal, stress and aerodynamics, just like they are looking at the real thing.
This heat shield, which was used as a test article for the Mars Curiosity Rover, will now be used as the flight heat shield for the Mars 2020 rover mission.
Fun fact: Lockheed Martin has built every Mars heat shield and aeroshell for us since the Viking missions in 1976.
Here you can see Lockheed Martin’s Mission Support Area. Engineers in this room support six of our robotic planetary spacecraft: Mars Odyssey, Mars Reconnaissance Orbiter, MAVEN, Juno, OSIRIS-REx and Spitzer, which recently revealed the first known system of seven Earth-size planets around a single star, TRAPPIST-1. They work with NASA centers and the mission science teams to develop and send commands and monitor the health of the spacecraft.
See all the pictures from the Lockheed Martin visit HERE.
Next, Lightfoot and Roe went to Sierra Nevada Corporation in Louisville, Colo. to get an update about its Dream Chaser vehicle. This spacecraft will take cargo to and from the International Space Station as part of our commercial cargo program.
Here, Sierra Nevada Corporation’s Vice President of Space Exploration Systems Steve Lindsey (who is also a former test pilot and astronaut!) speaks with Lightfoot and Roe about the Dream Chaser Space System simulator.
Lightfoot climbed inside the Dream Chaser simulator where he “flew” the crew version of the spacecraft to a safe landing. This mock-up facility enables approach-and-landing simulations as well as other real-life situations.
See all the images from the Sierra Nevada visit HERE.
Lightfoot and Roe went over to Ball Aerospace to tour its facility. Ball is another one of our commercial aerospace partners and helps builds instruments that are on NASA spacecraft throughout the universe, including the Hubble Space Telescope and the New Horizons mission to Pluto. Ball designed and built the advanced optical technology and lightweight mirror system that will enable the James Webb Space Telescope to look 13.5 billion years back in time.
Looking into the clean room at Ball Aerospace’s facility in Boulder, Colo., the team can see the Ozone Mapping Profiler Suite. These sensors are used on spacecraft to track ozone measurements.
Here, the group stands in front of a thermal vacuum chamber used to test satellite optics. The Operation Land Imager-2 is being built for Landsat 9, a collaboration between NASA and the U.S. Geological Survey that will continue the Landsat Program’s 40-year data record monitoring the Earth’s landscapes from space.
See all the pictures from the Ball Aerospace visit HERE.
We recently marked a decade since a new era began in commercial spaceflight development for low-Earth orbit transportation. We inked agreements in 2006 to develop rockets and spacecraft capable of carrying cargo such as experiments and supplies to and from the International Space Station. Learn more about commercial space HERE.
Make sure to follow us on Tumblr for your regular dose of space: http://nasa.tumblr.com
A Geminid meteor streaks across the sky as the Soyuz TMA-19M spacecraft is rolled out by train to the launch pad at the Baikonur Cosmodrome on Sunday, Dec. 13, 2015, in Kazakhstan. Credit: NASA/Joel Kowsky
Every December, we have a chance to see one of our favorite meteor showers – the Geminids. To help you prepare, we’ve answered some of your most commonly asked questions. Happy viewing, stargazers!
These radar images of near-Earth object 3200 Phaethon were generated by astronomers at the National Science Foundation's Arecibo Observatory on Dec. 17, 2017. Observations of Phaethon were conducted at Arecibo from Dec. 15 through 19, 2017. At time of closest approach on Dec. 16 at 3 p.m. PST (6 p.m. EST, 2300 UTC), the asteroid was about 6.4 million miles (10.3 million kilometers) away, or about 27 times the distance from Earth to the Moon. Credit: Arecibo Observatory/NASA/NSF
The Geminids are caused by debris from a celestial object known as 3200 Phaethon striking Earth’s atmosphere. Phaethon’s origin is the subject of some debate. Some astronomers consider it to be an extinct comet, based on observations showing some small amount of material leaving its surface. Others argue that it has to be an asteroid because of its orbit and its similarity to the main-belt asteroid Pallas.
All meteors appear to come from the same place in the sky, which is called the radiant. The Geminids appear to radiate from a point in the constellation Gemini, hence the name “Geminids.” The graphic shows the radiants of 388 meteors with speeds of 35 km/s observed by the NASA Fireball Network in December 2020. All the radiants are in Gemini, which means they belong to the Geminid shower. Credit: NASA
All meteors associated with a shower have similar orbits, and they all appear to come from the same place in the sky, which is called the radiant. The Geminids appear to radiate from a point in the constellation Gemini, hence the name “Geminids.”
A Geminid streaks across the sky in this photo from December 2019. Credit: NASA
The Geminid meteor shower is active for much of December, but the peak will occur during the night of Dec. 13 into the morning of Dec. 14, 2023. Meteor rates in rural areas can be upwards of one per minute this year with minimal moonlight to interfere.
As with all meteor showers, all you need is a clear sky, darkness, a bit of patience, and perhaps warm outerwear and blankets for this one. You don’t need to look in any particular direction, as meteors can generally be seen all over the sky. If you want to take photographs, check out these helpful tips.
An infographic based on 2019’s meteor camera data for the Geminids. Credit: NASA
Find the darkest place you can and give your eyes about 30 minutes to adapt to the dark. Avoid looking at your cell phone, as it will disrupt your night vision. Lie flat on your back and look straight up, taking in as much sky as possible.
A Geminid streaks across the sky in this photo from December 2011. Credit: NASA
According to Bill Cooke, lead for the Meteoroid Environment Office at NASA’s Marshall Space Flight Center in Huntsville, Alabama, “Most meteors appear to be colorless or white, however the Geminids appear with a greenish hue. They’re pretty meteors!” Depending on the meteor’s chemical composition, the meteor will emit different colors when burned in the Earth’s atmosphere. Oxygen, magnesium, and nickel usually produce green.
Make sure to follow us on Tumblr for your regular dose of space!
Our OSIRIS-REx spacecraft launches tomorrow, and will travel to a near-Earth asteroid, called Bennu. While there, it will collect a sample to bring back to Earth for study. But how exactly do we plan to get this spacecraft there and bring the sample back?
After launch, OSIRIS-REx will orbit the sun for a year, then use Earth’s gravitational field to assist it on its way to Bennu. In August 2018, the spacecraft’s approach to Bennu will begin.
The spacecraft will begin a detailed survey of Bennu two months after slowing to encounter the asteroid. The process will last over a year, and will include mapping of potential sample sites. After the selection of the final site, the spacecraft will briefly touch the surface of Bennu to retrieve a sample.
To collect a sample, the sampling arm will make contact with the surface of Bennu for about five seconds, during which it will release a burst of nitrogen gas. The procedure will cause rocks and surface material to be stirred up and captured in the sampler head. The spacecraft has enough nitrogen to allow three sampling attempts, to collect between 60 and 2000 grams (2-70 ounces).
In March 2021, the window for departure from the asteroid will open, and OSIRIS-REx will begin its return journey to Earth, arriving two and a half years later in September 2023.
The sample return capsule will separate from the spacecraft and enter the Earth’s atmosphere. The capsule containing the sample will be collected at the Utah Test and Training Range.
For two years after the sample return, the science team will catalog the sample and conduct analysis. We will also preserve at least 75% of the sample for further research by scientists worldwide, including future generations of scientists.
The OSIRIS-REx spacecraft is outfitted with some amazing instruments that will help complete the mission. Here’s a quick rundown:
The OCAMS Instrument Suite
PolyCam (center), MapCam (left) and SamCam (right) make up the camera suite on the spacecraft. These instruments are responsible for most of the visible light images that will be taken by the spacecraft.
OSIRIS-REx Laser Altimeter (OLA)
This instrument will provide a 3-D map of asteroid Bennu’s shape, which will allow scientists to understand the context of the asteroid’s geography and the sample location.
OSIRIS-REx Thermal Emission Spectrometer (OTES)
The OTES instrument will conduct surveys to map mineral and chemical abundances and will take the asteroid Bennu’s temperature.
OSIRIS-REx Visible and Infrared Spectrometer (OVIRS)
This instrument will measure visible and near infrared light from the asteroid. These observations could be used to identify water and organic materials.
Regolith X-Ray Imaging Spectrometer (REXIS)
REXIS can image X-ray emission from Bennu in order to provide an elemental abundance map of the asteroid’s surface.
Touch-and-Go Sample Arm Mechanism (TAGSAM)
This part of the spacecraft will be responsible for collecting a sample from Bennu’s surface.
OSIRIS-REx Talk Wednesday, Sept. 7 at noon EDT Join us for a discussion with representatives from the mission’s science and engineering teams. This talk will include an overview of the spacecraft and the science behind the mission. Social media followers can ask questions during this event by using #askNASA. Watch HERE.
Uncovering the Secrets of Asteroids Wednesday, Sept. 7 at 1 p.m. EDT During this panel, our scientists will discuss asteroids, how they relate to the origins of our solar system and the search for life beyond Earth. Social media followers can ask questions during this event by using #askNASA. Watch HERE.
Thursday, Sept. 8 starting at 5:30 p.m. EDT Watch the liftoff of the United Launch Alliance’s (ULA) Atlas V rocket from Kennedy Space Center in Florida at 7:05 p.m.
Full coverage is available online starting at 4:30 p.m. Watch HERE
We will also stream the liftoff on Facebook Live starting at 6:50 p.m. EDT. Watch HERE
Make sure to follow us on Tumblr for your regular dose of space: http://nasa.tumblr.com
Explore the universe and discover our home planet with the official NASA Tumblr account
1K posts