The Geminids Are Now Playing In A Sky Near You

The Geminids Are Now Playing in a Sky Near You

The Geminids, which peak during mid-December each year, are considered to be one of the best and most reliable annual meteor showers. 

This month, they're active from Dec. 4-17, and peak the evening of Dec. 13-14 for a full 24 hours, meaning more worldwide meteor watchers will get to enjoy the show. 

Below are 10 things to know about this beautiful spectacle.

image

1. The forecast. 

From our resident night sky expert, Jane Jones: If you can see Orion and Gemini in the sky, you'll see some Geminids. Expect to see about 60 meteors per hour before midnight on Dec. 13 and from midnight-3:30 a.m. on Dec. 14 from a dark sky. You'll see fewer meteors after moonrise at 3:30 a.m. local time. In the southern hemisphere, you won't see as many, perhaps 10-20 per hour, because the radiant—the point in the sky where the meteor shower appears to originate—never rises above the horizon.

2. Viewing tips.

Kids can join in on the fun as early as 9 or 10 p.m. You'll want to find an area well away from city or street lights. Come prepared for winter temperatures with a sleeping bag, blanket, or lawn chair. Lie flat on your back and look up, taking in as much of the sky as possible. After about 30 minutes in the dark, your eyes will adapt and you'll begin to see meteors. Be patient—the show will last until dawn, so you have plenty of time to catch a glimpse.

3. Late bloomer.

The Geminids weren't always such as a spectacular show. When they first began appearing in the mid-1800s, there were only 10-20 visible meteors per hour. Since then, the Geminids have grown to become one of the major showers of the year.

image

4. Remind me—where do meteor showers come from?

Meteors come from leftover comet particles and bits from asteroids. When these objects come around the Sun, they leave a dusty trail behind them. Every year, the Earth passes through these debris trails, which allows the bits to collide with our atmosphere, where they disintegrate to create fiery and colorful streaks in the sky.

image

5. That said...

While most meteor showers come from comets, the Geminids originate from an asteroid: 3200 Phaethon. Asteroid 3200 Phaethon takes 1.4 years to orbit the Sun once. It is possible that Phaethon is a "dead comet" or a new kind of object being discussed by astronomers called a "rock comet." Phaethon's comet-like, highly-elliptical orbit around the Sun supports this hypothesis. That said, scientists aren't too sure how to define Phaethon. When it passes by the Sun, it doesn't develop a cometary tail, and its spectra looks like a rocky asteroid. Also, the bits and pieces that break off to form the Geminid meteoroids are several times denser than cometary dust flakes.

image

6. Tell me more. 

3200 Phaethon was discovered on Oct. 11, 1983 by the Infrared Astronomical Satellite. Because of its close approach to the Sun, Phaethon is named after the Greek mythological character who drove the Sun-god Helios' chariot. Phaethon is a small asteroid: its diameter measures only 3.17 miles (5.10 kilometers) across. And we have astronomer Fred Whipple to thank—he realized that Phaethon is the source for the Geminids.

7. A tale of twins. 

The Geminids' radiant is the constellation Gemini, a.k.a. the "Twins." And, of course, the constellation of Gemini is also where we get the name for the shower: Geminids.

image

8. In case you didn't know. 

The constellation for which a meteor shower is named only helps stargazers determine which shower they're viewing on a given night; the constellation is not the source of the meteors. Also, don't just look to the constellation of Gemini to view the Geminids—they're visible throughout the night sky. 9. And in case you miss the show. 

There's a second meteor shower in December: the Ursids, radiating from Ursa Minor, the Little Dipper. If Dec. 22 and the morning of Dec. 23 are clear where you are, have a look at the Little Dipper's bowl—you might see about 10 meteors per hour. 10. Endless opportunities. There are so many sights to see in the sky. Use the Night Sky Network, the Solar System Ambassadors, and the Museum Alliance to look up local astronomy clubs, and join them for stargazing events in town, and under dark skies.

Make sure to follow us on Tumblr for your regular dose of space: http://nasa.tumblr.com.

More Posts from Nasa and Others

9 years ago
Http://bit.ly/rawcuriosity

http://bit.ly/rawcuriosity

Take a look around Mars. Here’s where I’m working right now.

Click the link to see all my latest pictures from the surface of Mars.

7 years ago

The Moon in Motion

Happy New Year! And happy supermoon! Tonight, the Moon will appear extra big and bright to welcome us into 2018 – about 6% bigger and 14% brighter than the average full Moon. And how do we know that? Well, each fall, our science visualizer Ernie Wright uses data from the Lunar Reconnaissance Orbiter (LRO) to render over a quarter of a million images of the Moon. He combines these images into an interactive visualization, Moon Phase and Libration, which depicts the Moon at every day and hour for the coming year. 

image

Want to see what the Moon will look like on your birthday this year? Just put in the date, and even the hour (in Universal Time) you were born to see your birthday Moon.

Our Moon is quite dynamic. In addition to Moon phases, our Moon appears to get bigger and smaller throughout the year, and it wobbles! Or at least it looks that way to us on Earth. This wobbling is called libration, from the Latin for ‘balance scale’ (libra). Wright relies on LRO maps of the Moon and NASA orbit calculations to create the most accurate depiction of the 6 ways our Moon moves from our perspective.

1. Phases

image

The Moon phases we see on Earth are caused by the changing positions of the Earth and Moon relative to the Sun. The Sun always illuminates half of the Moon, but we see changing shapes as the Moon revolves around the Earth. Wright uses a software library called SPICE to calculate the position and orientation of the Moon and Earth at every moment of the year. With his visualization, you can input any day and time of the year and see what the Moon will look like!

2. Shape of the Moon

image

Check out that crater detail! The Moon is not a smooth sphere. It’s covered in mountains and valleys and thanks to LRO, we know the shape of the Moon better than any other celestial body in the universe. To get the most accurate depiction possible of where the sunlight falls on the lunar surface throughout the month, Wright uses the same graphics software used by Hollywood design studios, including Pixar, and a method called ‘raytracing’ to calculate the intricate patterns of light and shadow on the Moon’s surface, and he checks the accuracy of his renders against photographs of the Moon he takes through his own telescope.

image

3. Apparent Size 

image

The Moon Phase and Libration visualization shows you the apparent size of the Moon. The Moon’s orbit is elliptical, instead of circular - so sometimes it is closer to the Earth and sometimes it is farther. You’ve probably heard the term “supermoon.” This describes a full Moon at or near perigee (the point when the Moon is closest to the Earth in its orbit). A supermoon can appear up to 14% bigger and brighter than a full Moon at apogee (the point when the Moon is farthest from the Earth in its orbit). 

Our supermoon tonight is a full Moon very close to perigee, and will appear to be about 14% bigger than the July 27 full Moon, the smallest full Moon of 2018, occurring at apogee. Input those dates into the Moon Phase and Libration visualization to see this difference in apparent size!

4. East-West Libration

Over a month, the Moon appears to nod, twist, and roll. The east-west motion, called ‘libration in longitude’, is another effect of the Moon’s elliptical orbital path. As the Moon travels around the Earth, it goes faster or slower, depending on how close it is to the Earth. When the Moon gets close to the Earth, it speeds up thanks to an additional pull from Earth’s gravity. Then it slows down, when it’s farther from the Earth. While this speed in orbital motion changes, the rotational speed of the Moon stays constant. 

This means that when the Moon moves faster around the Earth, the Moon itself doesn’t rotate quite enough to keep the same exact side facing us and we get to see a little more of the eastern side of the Moon. When the Moon moves more slowly around the Earth, its rotation gets a little ahead, and we see a bit more of its western side.

5. North-South Libration

image

The Moon also appears to nod, as if it were saying “yes,” a motion called ‘libration in latitude’. This is caused by the 5 degree tilt of the Moon’s orbit around the Earth. Sometimes the Moon is above the Earth’s northern hemisphere and sometimes it’s below the Earth’s southern hemisphere, and this lets us occasionally see slightly more of the northern or southern hemispheres of the Moon! 

6. Axis Angle

image

Finally, the Moon appears to tilt back and forth like a metronome. The tilt of the Moon’s orbit contributes to this, but it’s mostly because of the 23.5 degree tilt of our own observing platform, the Earth. Imagine standing sideways on a ramp. Look left, and the ramp slopes up. Look right and the ramp slopes down. 

Now look in front of you. The horizon will look higher on the right, lower on the left (try this by tilting your head left). But if you turn around, the horizon appears to tilt the opposite way (tilt your head to the right). The tilted platform of the Earth works the same way as we watch the Moon. Every two weeks we have to look in the opposite direction to see the Moon, and the ground beneath our feet is then tilted the opposite way as well.

So put this all together, and you get this:

Beautiful isn’t it? See if you can notice these phenomena when you observe the Moon. And keep coming back all year to check on the Moon’s changing appearance and help plan your observing sessions.

Follow @NASAMoon on Twitter to keep up with the latest lunar updates. 

Make sure to follow us on Tumblr for your regular dose of space: http://nasa.tumblr.com.


Tags
2 years ago

Why Do X-Ray Mirrors Look So Unusual?

Completed quadrant of an X-ray Mirror Assembly, under development for the JAXA/NASA XRISM mission. It is shaped like a fan with thin metal struts holding it together.

Does the object in this image look like a mirror? Maybe not, but that’s exactly what it is! To be more precise, it’s a set of mirrors that will be used on an X-ray telescope. But why does it look nothing like the mirrors you’re familiar with? To answer that, let’s first take a step back. Let’s talk telescopes.

How does a telescope work?

The basic function of a telescope is to gather and focus light to amplify the light’s source. Astronomers have used telescopes for centuries, and there are a few different designs. Today, most telescopes use curved mirrors that magnify and focus light from distant objects onto your eye, a camera, or some other instrument. The mirrors can be made from a variety of materials, including glass or metal.

Diagram showing a reflecting telescope with a pair of mirrors to focus the light on the detector — in this case, an observer’s eye. The diagram shows the “flow” of light, which starts at a distant galaxy, enters the telescope and bounces off the primary mirror at the bottom of the telescope. Then the light moves to the secondary mirror which redirects the light out of the side of the telescope tube into the observer’s eye.

Space telescopes like the James Webb and Hubble Space Telescopes use large mirrors to focus light from some of the most distant objects in the sky. However, the mirrors must be tailored for the type and range of light the telescope is going to capture—and X-rays are especially hard to catch.

X-rays versus mirrors

X-rays tend to zip through most things. This is because X-rays have much smaller wavelengths than most other types of light. In fact, X-rays can be smaller than a single atom of almost every element. When an X-ray encounters some surfaces, it can pass right between the atoms!

X-ray image of a human elbow. Denser materials, like bone, stop more X-rays than skin and muscle.

Doctors use this property of X-rays to take pictures of what’s inside you. They use a beam of X-rays that mostly passes through skin and muscle but is largely blocked by denser materials, like bone. The shadow of what was blocked shows up on the film.

This tendency to pass through things includes most mirrors. If you shoot a beam of X-rays into a standard telescope, most of the light would go right through or be absorbed. The X-rays wouldn’t be focused by the mirror, and we wouldn’t be able to study them.

Animation first showing a plane of balls face-on and an arrow passing through the space between the balls. Then the angle changes to show the balls edge-on and an arrow bouncing off the top.

X-rays can bounce off a specially designed mirror, one turned on its side so that the incoming X-rays arrive almost parallel to the surface and glance off it. At this shallow angle, the space between atoms in the mirror's surface shrinks so much that X-rays can't sneak through. The light bounces off the mirror like a stone skipping on water. This type of mirror is called a grazing incidence mirror.

A metallic onion

Telescope mirrors curve so that all of the incoming light comes to the same place. Mirrors for most telescopes are based on the same 3D shape — a paraboloid. You might remember the parabola from your math classes as the cup-shaped curve. A paraboloid is a 3D version of that, spinning it around the axis, a little like the nose cone of a rocket. This turns out to be a great shape for focusing light at a point.

A line drawing of a parabola - a cup-shaped curve, shown here on its side - spins around to create a 3D shape. The word “paraboloid” shows on the screen. Then part of the curve fades away, leaving behind two things:  a small concave circle, which was one end of the paraboloid, labeled “Radio dishes; optical, infrared and ultraviolet telescope mirrors,” and a cylinder with sloping walls, which was the part of the edges of the paraboloid, labeled “X-ray mirrors.”

Mirrors for visible and infrared light and dishes for radio light use the “cup” portion of that paraboloid. For X-ray astronomy, we cut it a little differently to use the wall. Same shape, different piece. The mirrors for visible, infrared, ultraviolet, and radio telescopes look like a gently-curving cup. The X-ray mirror looks like a cylinder with very slightly angled walls.

The image below shows how different the mirrors look. On the left is one of the Chandra X-ray Observatory’s cylindrical mirrors. On the right you can see the gently curved round primary mirror for the Stratospheric Observatory for Infrared Astronomy telescope.

On the left, a technician stands next to a cylinder-shaped mirror designed for X-ray astronomy. The mirror is held in a frame a little off the ground, and is about as tall as the technician. On the right, two technicians inspect a round mirror for optical astronomy.

If we use just one grazing incidence mirror in an X-ray telescope, there would be a big hole, as shown above (left). We’d miss a lot of X-rays! Instead, our mirror makers fill in that cylinder with layers and layers of mirrors, like an onion. Then we can collect more of the X-rays that enter the telescope, giving us more light to study.

Completed X-ray Mirror Assembly for the X-ray Imaging and Spectroscopy Mission (XRISM, pronounced “crism”), which is a collaboration between the Japan Aerospace Exploration Agency (JAXA) and NASA, along with ESA participation. The assembly has thin metal struts fanning outward from a silver ring in the center of the image. Shiny ridge surfaces (actually many thin mirrors!) fill in the spaces between the struts.

Nested mirrors like this have been used in many X-ray telescopes. Above is a close-up of the mirrors for an upcoming observatory called the X-ray Imaging and Spectroscopy Mission (XRISM, pronounced “crism”), which is a Japan Aerospace Exploration Agency (JAXA)-led international collaboration between JAXA, NASA, and the European Space Agency (ESA).

The XRISM mirror assembly uses thin, gold-coated mirrors to make them super reflective to X-rays. Each of the two assemblies has 1,624 of these layers packed in them. And each layer is so smooth that the roughest spots rise no more than one millionth of a millimeter.

Chandra observations of the Perseus galaxy cluster showing turbulence in the hot X-ray-emitting gas.

Why go to all this trouble to collect this elusive light? X-rays are a great way to study the hottest and most energetic areas of the universe! For example, at the centers of certain galaxies, there are black holes that heat up gas, producing all kinds of light. The X-rays can show us light emitted by material just before it falls in.

Stay tuned to NASA Universe on Twitter and Facebook to keep up with the latest on XRISM and other X-ray observatories.

Make sure to follow us on Tumblr for your regular dose of space!


Tags
4 years ago

How will the audio feed from Perseverance make its way back to Earth?


Tags
5 years ago

What aspect of spaceflight always blows your mind, even after all this time?


Tags
4 days ago

Seeing the Invisible Universe

A black circle is surrounded by arcs of red, blue, orange, and white. Farther out from the circle are blotches of red, blue, orange, and white representing celestial objects. Credit: NASA, ESA, and D. Coe, J. Anderson, and R. van der Marel (STScI)

This computer-simulated image shows a supermassive black hole at the core of a galaxy. The black region in the center represents the black hole’s event horizon, beyond which no light can escape the massive object’s gravitational grip. The black hole’s powerful gravity distorts space around it like a funhouse mirror. Light from background stars is stretched and smeared as it skims by the black hole. You might wonder — if this Tumblr post is about invisible things, what’s with all the pictures? Even though we can’t see these things with our eyes or even our telescopes, we can still learn about them by studying how they affect their surroundings. Then, we can use what we know to make visualizations that represent our understanding.

When you think of the invisible, you might first picture something fantastical like a magic Ring or Wonder Woman’s airplane, but invisible things surround us every day. Read on to learn about seven of our favorite invisible things in the universe!

1. Black Holes

This short looping animation starts with a white flash as a small white circle, representing a star, gets near a small black circle, representing a black hole. The small white circle is torn apart into billions of small particles that get whipped into an oval coiling around the black hole from the right to the left. One trailing stream is flung in an arc to the left side of the animation while the end closest to the black hole wraps around it in several particle streams. Thousands of flecks from the outermost edge of the streams fly farther away from the black hole as the animation progresses, while the inner stream continues to loop. Two jets of fast-moving white particles burst out of the black hole from the top and bottom. The white speckled outbursts get brighter as the animation concludes. Credit: NASA’s Goddard Space Flight Center/Chris Smith (USRA/GESTAR)

This animation illustrates what happens when an unlucky star strays too close to a monster black hole. Gravitational forces create intense tides that break the star apart into a stream of gas. The trailing part of the stream escapes the system, while the leading part swings back around, surrounding the black hole with a disk of debris. A powerful jet can also form. This cataclysmic phenomenon is called a tidal disruption event.

You know ‘em, and we love ‘em. Black holes are balls of matter packed so tight that their gravity allows nothing — not even light — to escape. Most black holes form when heavy stars collapse under their own weight, crushing their mass to a theoretical singular point of infinite density.

Although they don’t reflect or emit light, we know black holes exist because they influence the environment around them — like tugging on star orbits. Black holes distort space-time, warping the path light travels through, so scientists can also identify black holes by noticing tiny changes in star brightness or position.

2. Dark Matter

In front of a black background, there are millions of glowing green dots. They form a fine, wispy web stretching across the image, like old cobwebs that have collected dust. Over time, more dots collect at the vertices of the web. As the web gets thicker and thicker, the vertices grow and start moving toward each other and toward the center. The smaller dots circle the clumps, like bees buzzing around a hive, until they are pulled inward to join them. Eventually, the clumps merge to create a glowing green mass. The central mass ensnares more dots, coercing even those from the farthest reaches of the screen to circle it. Credit: Simulation: Wu, Hahn, Wechsler, Abel (KIPAC), Visualization: Kaehler (KIPAC)

A simulation of dark matter forming large-scale structure due to gravity.

What do you call something that doesn’t interact with light, has a gravitational pull, and outnumbers all the visible stuff in the universe by five times? Scientists went with “dark matter,” and they think it's the backbone of our universe’s large-scale structure. We don’t know what dark matter is — we just know it's nothing we already understand.

We know about dark matter because of its gravitational effects on galaxies and galaxy clusters — observations of how they move tell us there must be something there that we can’t see. Like black holes, we can also see light bend as dark matter’s mass warps space-time.

3. Dark Energy

An animation on a black rectangular background. On the left of the visual is a graph. The y-axis reads “Expansion Speed.” The x-axis is labeled “Time.” At the origin, the x-axis reads, “10 billion years ago.” Halfway across the x-axis is labeled “7 Billion years ago.” At the end of the x-axis is labeled “now.” A line on the graph starts at the top of the y-axis. It slopes down to the right, linearly, as if it were going to draw a straight line from the top left corner of the graph to the bottom right corner of the graph. Around the 7-billion mark, the line begins to decrease in slope very gradually. Three quarters of the way across the x-axis and three quarters of the way down the y-axis, the line reaches a minimum, before quickly curving upward. It rapidly slopes upward, reaching one quarter from the top of the y-axis as it reaches the end of the x-axis labeled “now.” At the same time, on the right hand of the visual is a tiny dark blue sphere which holds within it glowing lighter blue spheres — galaxies and stars — and a lighter blue webbing. As the line crawls across the graph, the sphere expands. At first, its swelling gently slows, corresponding to the decreasing line on the graph. As the line arcs back upward, the sphere expands rapidly until it grows larger than the right half of the image and encroaches on the graph. Credit: NASA's Goddard Space Flight Center

Animation showing a graph of the universe’s expansion over time. While cosmic expansion slowed following the end of inflation, it began picking up the pace around 5 billion years ago. Scientists still aren’t sure why.

No one knows what dark energy is either — just that it’s pushing our universe to expand faster and faster. Some potential theories include an ever-present energy, a defect in the universe’s fabric, or a flaw in our understanding of gravity.

Scientists previously thought that all the universe’s mass would gravitationally attract, slowing its expansion over time. But when they noticed distant galaxies moving away from us faster than expected, researchers knew something was beating gravity on cosmic scales. After further investigation, scientists found traces of dark energy’s influence everywhere — from large-scale structure to the background radiation that permeates the universe.

4. Gravitational Waves

In this animation, two small black circles, representing black holes, orbit one another in a circular counter-clockwise motion. There is a square grid pattern behind them. Around each black hole, a purple haze glows, getting more transparent farther out from the black holes. The haze creates a circle about the size of the black holes’ orbits. Trailing in an arc out from each black hole, an orange hazy strip curls around the frame as the black holes’ orbits circle, like the spiral of a snail shell. The orange strips move farther from the black holes over time, and as they pass over the gridded background, the background warps so that the grid-lines under the stripes appear to bump up. Credit: NASA's Goddard Space Flight Center Conceptual Image Lab

Two black holes orbit each other and generate space-time ripples called gravitational waves in this animation.

Like the ripples in a pond, the most extreme events in the universe — such as black hole mergers — send waves through the fabric of space-time. All moving masses can create gravitational waves, but they are usually so small and weak that we can only detect those caused by massive collisions.  Even then they only cause infinitesimal changes in space-time by the time they reach us. Scientists use lasers, like the ground-based LIGO (Laser Interferometer Gravitational-Wave Observatory) to detect this precise change. They also watch pulsar timing, like cosmic clocks, to catch tiny timing differences caused by gravitational waves.

This animation shows gamma rays (magenta), the most energetic form of light, and elusive particles called neutrinos (gray) formed in the jet of an active galaxy far, far away. The emission traveled for about 4 billion years before reaching Earth. On Sept. 22, 2017, the IceCube Neutrino Observatory at the South Pole detected the arrival of a single high-energy neutrino. NASA’s Fermi Gamma-ray Space Telescope showed that the source was a black-hole-powered galaxy named TXS 0506+056, which at the time of the detection was producing the strongest gamma-ray activity Fermi had seen from it in a decade of observations.

5. Neutrinos

Seeing The Invisible Universe

This animation shows gamma rays (magenta), the most energetic form of light, and elusive particles called neutrinos (gray) formed in the jet of an active galaxy far, far away. The emission traveled for about 4 billion years before reaching Earth. On Sept. 22, 2017, the IceCube Neutrino Observatory at the South Pole detected the arrival of a single high-energy neutrino. NASA’s Fermi Gamma-ray Space Telescope showed that the source was a black-hole-powered galaxy named TXS 0506+056, which at the time of the detection was producing the strongest gamma-ray activity Fermi had seen from it in a decade of observations.

Because only gravity and the weak force affect neutrinos, they don’t easily interact with other matter — hundreds of trillions of these tiny, uncharged particles pass through you every second! Neutrinos come from unstable atom decay all around us, from nuclear reactions in the Sun to exploding stars, black holes, and even bananas.

Scientists theoretically predicted neutrinos, but we know they actually exist because, like black holes, they sometimes influence their surroundings. The National Science Foundation’s IceCube Neutrino Observatory detects when neutrinos interact with other subatomic particles in ice via the weak force.

6. Cosmic Rays

Earth’s horizon from space divides this animation in half from the top-left corner to the bottom-right corner. The slightly curved surface glows faintly white into the inky black space that takes up the other half of the frame. Earth is primarily blue, covered in soft patchy white clouds that glow soft yellow. Hundreds of small white streaks rain down diagonally from the right toward Earth. As they reach the faint white glow, they suddenly break into thousands of smaller particles that shower down onto the planet. Credit: NASA's Goddard Space Flight Center

This animation illustrates cosmic ray particles striking Earth's atmosphere and creating showers of particles.

Every day, trillions of cosmic rays pelt Earth’s atmosphere, careening in at nearly light-speed — mostly from outside our solar system. Magnetic fields knock these tiny charged particles around space until we can hardly tell where they came from, but we think high energy events like supernovae can accelerate them. Earth’s atmosphere and magnetic field protect us from cosmic rays, meaning few actually make it to the ground.

Though we don’t see the cosmic rays that make it to the ground, they tamper with equipment, showing up as radiation or as “bright” dots that come and go between pictures on some digital cameras. Cosmic rays can harm astronauts in space, so there are plenty of precautions to protect and monitor them.

7. (Most) Electromagnetic Radiation

A diagram reading “electromagnetic spectrum.” The diagram consists primarily of a rectangle that stretches across the width of the image. The rectangle is broken into six sections labelled left to right, “gamma,” then “x-ray,” then “ultraviolet,” then “visible,” then “infrared,” then “microwave,” and finally “radio.” The sections are not all the same size, with visible being the smallest by far, then gamma ray, then x-ray, then ultraviolet, microwave, radio, and finally infrared being the longest section. The individual sections are divided further into five sections that create color gradients. Gamma, x-ray, and microwave are gradients of grey. Ultraviolet is a gradient from a pinkish purple on the left to purple on the right. Infrared is a gradient from red on the left to orange on the right. The visible section creates a rainbow, going from purple, to blue, green, yellow, and finally red. Above each section is a squiggly vertical line. Each section has squiggly lines taking up the same vertical space but they have larger and larger curves going from left to right, with gamma having the smallest amplitude and wavelength and radio having the largest. Credit: NASA, ESA, CSA, Joseph Olmsted (STScI)

The electromagnetic spectrum is the name we use when we talk about different types of light as a group. The parts of the electromagnetic spectrum, arranged from highest to lowest energy are: gamma rays, X-rays, ultraviolet light, visible light, infrared light, microwaves, and radio waves. All the parts of the electromagnetic spectrum are the same thing — radiation. Radiation is made up of a stream of photons — particles without mass that move in a wave pattern all at the same speed, the speed of light. Each photon contains a certain amount of energy.

The light that we see is a small slice of the electromagnetic spectrum, which spans many wavelengths. We frequently use different wavelengths of light — from radios to airport security scanners and telescopes.

Visible light makes it possible for many of us to perceive the universe every day, but this range of light is just 0.0035 percent of the entire spectrum. With this in mind, it seems that we live in a universe that’s more invisible than not! NASA missions like NASA's Fermi, James Webb, and Nancy Grace Roman  space telescopes will continue to uncloak the cosmos and answer some of science’s most mysterious questions.

Make sure to follow us on Tumblr for your regular dose of space!


Tags
1 year ago

as flight directors, you are in charge of a lot of the operations, but do you ever get to experience handling controls or zero gravity simulation? do you have to know every aspect of everyone's job?


Tags
5 years ago

A Day in Our Lives With X-Ray Tech

On July 23, 1999, NASA’s Chandra X-ray Observatory, the most powerful X-ray telescope ever built, was launched into space. Since then, Chandra has made numerous amazing discoveries, giving us a view of the universe that is largely hidden from view through telescopes that observe in other types of light.

image

The technology behind X-ray astronomy has evolved at a rapid pace, producing and contributing to many spinoff applications you encounter in day-to-day life. It has helped make advancements in such wide-ranging fields as security monitoring, medicine and bio-medical research, materials processing, semi-conductor and microchip manufacturing and environmental monitoring.

A Day In Our Lives With X-Ray Tech

7:00 am: Your hand has been bothering you ever since you caught that ball at the family reunion last weekend. Your doctor decides it would be a good idea for an X-ray to rule out any broken bones. X-rays are sent through your hand and their shadow is captured on a detector behind it. You’re relieved to hear nothing is broken, though your doctor follows up with an MRI to make sure the tendons and ligaments are OK.

Two major developments influenced by X-ray astronomy include the use of sensitive detectors to provide low dose but high-resolution images, and the linkage with digitizing and image processing systems. Because many diagnostic procedures, such as mammographies and osteoporosis scans, require multiple exposures, it is important that each dosage be as low as possible. Accurate diagnoses also depend on the ability to view the patient from many different angles. Image processing systems linked to detectors capable of recording single X-ray photons, like those developed for X-ray astronomy purposes, provide doctors with the required data manipulation and enhancement capabilities. Smaller hand-held imaging systems can be used in clinics and under field conditions to diagnose sports injuries, to conduct outpatient surgery and in the care of premature and newborn babies.

image

8:00 am: A technician places your hand in a large cylindrical machine that whirs and groans as the MRI is taken. Unlike X-rays that can look at bones and dense structures, MRIs use magnets and short bursts of radio waves to see everything from organs to muscles.

MRI systems are incredibly important for diagnosing a whole host of potential medical problems and conditions. X-ray technology has helped MRIs. For example, one of the instruments developed for use on Chandra was an X-ray spectrometer that would precisely measure the energy signatures over a key range of X-rays. In order to make these observations, this X-ray spectrometer had to be cooled to extremely low temperatures. Researchers at our Goddard Space Flight Center in Greenbelt, Maryland developed an innovative magnet that could achieve these very cold temperatures using a fraction of the helium that other similar magnets needed, thus extending the lifetime of the instrument’s use in space. These advancements have helped make MRIs safer and require less maintenance.

image

11:00 am:  There’s a pharmacy nearby so you head over to pick up allergy medicine on the way home from your doctor’s appointment.

X-ray diffraction is the technique where X-ray light changes its direction by amounts that depend on the X-ray energy, much like a prism separates light into its component colors. Scientists using Chandra take advantage of diffraction to reveal important information about distant cosmic sources using the observatory’s two gratings instruments, the High Energy Transmission Grating Spectrometer (HETGS) and the Low Energy Transmission Grating Spectrometer (LETGS).

X-ray diffraction is also used in biomedical and pharmaceutical fields to investigate complex molecular structures, including basic research with viruses, proteins, vaccines and drugs, as well as for cancer, AIDS and immunology studies. How does this work? In most applications, the subject molecule is crystallized and then irradiated. The resulting diffraction pattern establishes the composition of the material. X-rays are perfect for this work because of their ability to resolve small objects. Advances in detector sensitivity and focused beam optics have allowed for the development of systems where exposure times have been shortened from hours to seconds. Shorter exposures coupled with lower-intensity radiation have allowed researchers to prepare smaller crystals, avoid damage to samples and speed up their data runs.

image

12:00 pm: Don’t forget lunch. There’s not much time after your errands so you grab a bag of pretzels. Food safety procedures for packaged goods include the use of X-ray scans to make sure there is quality control while on the production line.

Advanced X-ray detectors with image displays inspect the quality of goods being produced or packaged on a production line. With these systems, the goods do not have to be brought to a special screening area and the production line does not have to be disrupted. The systems range from portable, hand-held models to large automated systems. They are used on such products as aircraft and rocket parts and structures, canned and packaged foods, electronics, semiconductors and microchips, thermal insulations and automobile tires.

image

2:00 pm: At work, you are busy multi-tasking across a number of projects, running webinar and presentation software, as well as applications for your calendar, spreadsheets, word processing, image editing and email (and perhaps some social media on the side). It’s helpful that your computer can so easily handle running many applications at once.

X-ray beam lithography can produce extremely fine lines and has applications for developing computer chips and other semiconductor related devices. Several companies are researching the use of focused X-ray synchrotron beams as the energy source for this process, since these powerful beams produce good pattern definition with relatively short exposure times. The grazing incidence optics — that is, the need to skip X-rays off a smooth mirror surface like a stone across a pond and then focus them elsewhere — developed for Chandra were the highest precision X-ray optics in the world and directly influenced this work.

image

7:00 pm: Dream vacation with your family. Finally!  You are on your way to the Bahamas to swim with the dolphins. In the line for airport security, carry-on bags in hand, you are hoping you’ve remembered sunscreen. Shoes off! All items placed in the tray. Thanks to X-ray technology, your bags will be inspected quickly and you WILL catch your plane…

The first X-ray baggage inspection system for airports used detectors nearly identical to those flown in the Apollo program to measure fluorescent X-rays from the Moon. Its design took advantage of the sensitivity of the detectors that enabled the size, power requirements and radiation exposure of the system to be reduced to limits practical for public use, while still providing adequate resolution to effectively screen baggage.  The company that developed the technology later developed a system that can simultaneously image, on two separate screens, materials of high atomic weight (e.g. metal hand guns) and materials of low atomic weight (e.g. plastic explosives) that pass through other systems undetected. Variations of these machines are used to screen visitors to public buildings around the world.

Check out Chandra’s 20th anniversary page to see how they are celebrating.

Make sure to follow us on Tumblr for your regular dose of space: http://nasa.tumblr.com.


Tags
5 years ago

What was your favourite NASA mission or project?

Follow our Mars 2020 rover, named Perseverance or “Percy,” on Twitter to keep up with all its progress and discoveries!

Percy: https://twitter.com/NASAPersevere

twitter.com
The latest Tweets from NASA's Perseverance Mars Rover (@NASAPersevere). NASA Mars rover. Launch: July 2020. Landing: Feb. 18, 2021. Hobbies:

Tags
5 years ago

Clay, Clouds and Curiosity

image

Our Curiosity Mars rover recently drilled into the Martian bedrock on Mount Sharp and uncovered the highest amounts of clay minerals ever seen during the mission. The two pieces of rock that the rover targeted are nicknamed "Aberlady" and "Kilmarie" and they appear in a new selfie taken by the rover on May 12, 2019, the 2,405th Martian day, or sol, of the mission.

image

On April 6, 2019, Curiosity drilled the first piece of bedrock called Aberlady, revealing the clay cache. So, what’s so interesting about clay? Clay minerals usually form in water, an ingredient essential to life. All along its 7-year journey, Curiosity has discovered clay minerals in mudstones that formed as river sediment settled within ancient lakes nearly 3.5 billion years ago. As with all water on Mars, the lakes eventually dried up.

image

But Curiosity does more than just look at the ground. Even with all the drilling and analyzing, Curiosity took time on May 7, 2019 and May 12, 2019 to gaze at the clouds drifting over the Martian surface. Observing clouds can help scientists calculate wind speeds on the Red Planet.

For more on Curiosity and our other Mars missions like InSight, visit: https://mars.nasa.gov.

Make sure to follow us on Tumblr for your regular dose of space: http://nasa.tumblr.com.


Tags
Loading...
End of content
No more pages to load
  • roasted-chestnut
    roasted-chestnut liked this · 4 years ago
  • melamelindah
    melamelindah liked this · 4 years ago
  • tayleesii
    tayleesii liked this · 5 years ago
  • laspadasara
    laspadasara reblogged this · 5 years ago
  • fuijnyumi-blog
    fuijnyumi-blog liked this · 5 years ago
  • kuxa-an
    kuxa-an liked this · 6 years ago
  • missobrien25
    missobrien25 liked this · 6 years ago
  • surferbutchok
    surferbutchok liked this · 6 years ago
  • gutsie-ee
    gutsie-ee reblogged this · 6 years ago
  • gutsie-ee
    gutsie-ee liked this · 6 years ago
  • albedobeheading
    albedobeheading liked this · 6 years ago
  • egotisticalgold
    egotisticalgold liked this · 6 years ago
  • ledonatella23
    ledonatella23 reblogged this · 6 years ago
  • joryoq
    joryoq liked this · 6 years ago
  • sunshineofyourlove1967
    sunshineofyourlove1967 liked this · 6 years ago
  • mas00by
    mas00by liked this · 6 years ago
  • random-freakin-stufff
    random-freakin-stufff liked this · 6 years ago
  • ivybethsaida
    ivybethsaida liked this · 6 years ago
  • glittercl1t
    glittercl1t liked this · 6 years ago
  • dauntlessslytherinn
    dauntlessslytherinn liked this · 6 years ago
  • petiteavocado
    petiteavocado reblogged this · 6 years ago
  • apartamentoo512
    apartamentoo512 liked this · 6 years ago
  • partynthem
    partynthem liked this · 6 years ago
  • mandalaur
    mandalaur reblogged this · 6 years ago
  • mandalaur
    mandalaur liked this · 6 years ago
  • saturninthe10th
    saturninthe10th reblogged this · 6 years ago
  • buttermilk-thegoat
    buttermilk-thegoat liked this · 6 years ago
  • aquarius-sucks
    aquarius-sucks reblogged this · 6 years ago
  • aquarius-sucks
    aquarius-sucks liked this · 6 years ago
  • san92994
    san92994 reblogged this · 6 years ago
  • a-womanunkind
    a-womanunkind liked this · 6 years ago
nasa - NASA
NASA

Explore the universe and discover our home planet with the official NASA Tumblr account

1K posts

Explore Tumblr Blog
Search Through Tumblr Tags