Our massive James Webb Space Telescope just recently emerged from about 100 days of cryogenic testing to make sure it can work perfectly at incredibly cold temperatures when it’s in deep space.
Webb is a giant infrared space telescope that we are currently building. It was designed to see things that other telescopes, even the amazing Hubble Space Telescope, can’t see.
Webb’s giant 6.5-meter diameter primary mirror is part of what gives it superior vision, and it’s coated in gold to optimize it for seeing infrared light.
Lots of stuff in space emits infrared light, so being able to observe it gives us another tool for understanding the universe. For example, sometimes dust obscures the light from objects we want to study – but if we can see the heat they are emitting, we can still “see” the objects to study them.
It’s like if you were to stick your arm inside a garbage bag. You might not be able to see your arm with your eyes – but if you had an infrared camera, it could see the heat of your arm right through the cooler plastic bag.
Credit: NASA/IPAC
With a powerful infrared space telescope, we can see stars and planets forming inside clouds of dust and gas.
We can also see the very first stars and galaxies that formed in the early universe. These objects are so far away that…well, we haven’t actually been able to see them yet. Also, their light has been shifted from visible light to infrared because the universe is expanding, and as the distances between the galaxies stretch, the light from them also stretches towards redder wavelengths.
We call this phenomena “redshift.” This means that for us, these objects can be quite dim at visible wavelengths, but bright at infrared ones. With a powerful enough infrared telescope, we can see these never-before-seen objects.
We can also study the atmospheres of planets orbiting other stars. Many of the elements and molecules we want to study in planetary atmospheres have characteristic signatures in the infrared.
Because infrared light comes from objects that are warm, in order to detect the super faint heat signals of things that are really, really far away, the telescope itself has to be very cold. How cold does the telescope have to be? Webb’s operating temperature is under 50K (or -370F/-223 C). As a comparison, water freezes at 273K (or 32 F/0 C).
Because there is no atmosphere in space, as long as you can keep something out of the Sun, it will get very cold. So Webb, as a whole, doesn’t need freezers or coolers - instead it has a giant sunshield that keeps it in the shade. (We do have one instrument on Webb that does have a cryocooler because it needs to operate at 7K.)
Also, we have to be careful that no nearby bright things can shine into the telescope – Webb is so sensitive to faint infrared light, that bright light could essentially blind it. The sunshield is able to protect the telescope from the light and heat of the Earth and Moon, as well as the Sun.
Out at what we call the Second Lagrange point, where the telescope will orbit the Sun in line with the Earth, the sunshield is able to always block the light from bright objects like the Earth, Sun and Moon.
By lots of testing on the ground before we launch it. Every piece of the telescope was designed to work at the cold temperatures it will operate at in space and was tested in simulated space conditions. The mirrors were tested at cryogenic temperatures after every phase of their manufacturing process.
The instruments went through multiple cryogenic tests at our Goddard Space Flight Center in Maryland.
Once the telescope (instruments and optics) was assembled, it even underwent a full end-to-end test in our Johnson Space Center’s giant cryogenic chamber, to ensure the whole system will work perfectly in space.
It will move to Northrop Grumman where it will be mated to the sunshield, as well as the spacecraft bus, which provides support functions like electrical power, attitude control, thermal control, communications, data handling and propulsion to the spacecraft.
Learn more about the James Webb Space Telescope HERE, or follow the mission on Facebook, Twitter and Instagram.
Make sure to follow us on Tumblr for your regular dose of space: http://nasa.tumblr.com.
Did what you study in college prepare you for this career choice? How did you figure out this career was something you were interested in?
On Jan. 25, we’re going for GOLD!
We’re launching an instrument called Global-scale Observations of the Limb and Disk, GOLD for short. It’s a new mission that will study a complicated — and not yet fully understood — region of near-Earth space, called the ionosphere.
Space is not completely empty: It’s teeming with fast-moving energized particles and electric and magnetic fields that guide their motion. At the boundary between Earth’s atmosphere and space, these particles and fields — the ionosphere — co-exist with the upper reaches of the neutral atmosphere.
That makes this a complicated place. Big events in the lower atmosphere, like hurricanes or tsunamis, can create waves that travel all the way up to that interface to space, changing the wind patterns and causing disruptions.
It’s also affected by space weather. The Sun is a dynamic star, and it releases spurts of energized particles and blasts of solar material carrying electric and magnetic fields that travel out through the solar system. Depending on their direction, these bursts have the potential to disrupt space near Earth.
This combination of factors makes it hard to predict changes in the ionosphere — and that can have a big impact. Communications signals, like radio waves and signals that make our GPS systems work, travel through this region, and sudden changes can distort them or even cut them off completely.
Low-Earth orbiting satellites — including the International Space Station — also fly through the ionosphere, so understanding how it fluctuates is important for protecting these satellites and astronauts.
GOLD is a spectrograph, an instrument that breaks light down into its component wavelengths, measuring their intensities. Breaking light up like this helps scientists see the behavior of individual chemical elements — for instance, separating the amount of oxygen versus nitrogen. GOLD sees in far ultraviolet light, a type of light that’s invisible to our eyes.
GOLD is a hosted payload. The instrument is hitching a ride aboard SES-14, a commercial communications satellite built by Airbus for SES Government Solutions, which owns and operates the satellite.
Also launching this year is the Ionospheric Connection Explorer, or ICON, which will also study the ionosphere and neutral upper atmosphere. But while GOLD will fly in geostationary orbit some 22,000 miles above the Western Hemisphere, ICON will fly just 350 miles above Earth, able to gather close up images of this region.
Together, these missions give us an unprecedented look at the ionosphere and upper atmosphere, helping us understand the very nature of how our planet interacts with space.
To learn more about this region of space and the GOLD mission, visit: nasa.gov/gold.
Make sure to follow us on Tumblr for your regular dose of space: http://nasa.tumblr.com.
This year’s summer solstice for the northern hemisphere arrives at 11:54 a.m. EDT, meaning today is the longest day of the year! The number of daylight hours varies by latitude, so our headquarters in Washington, D.C. will see 14 hours, 53 minutes, and 51 seconds of daylight. A lot can happen in that time! Let’s find out more.
If you’re spending the day outside, you might be in the path of our Earth Science Satellite Fleet (ESSF)! The fleet, made up of over a dozen Earth observation satellites, will pass over the continental United States about 37 times during today’s daylight hours.
These missions collect data on atmospheric chemistry and composition, cloud cover, ocean levels, climate, ecosystem dynamics, precipitation, and glacial movement, among other things. They aim to do everything from predicting extreme weather to helping informing the public and decision makers with the environment through GPS and imaging. Today, their sensors will send back over 200 gigabytes (GB) of data back to the ground by sunset.
As the sun sets today, the International Space Station (ISS) will be completing its 10th orbit since sunrise. In that time, a little more than 1 terabyte-worth of data will be downlinked to Earth.
That number encompasses data from ground communications, payloads, experiments, and control and navigation signals for the station. Approximately 330 GB of that TB is video, including live broadcasts and downlinks with news outlets. But as recently-returned astronaut Serena Auñón-Chancellor likes to point out, there’s still room for fun. The astronauts aboard the ISS can request YouTube videos or movies for what she likes to call “family movie night.”
Astronauts aboard the station also send back images—LOTS of them. Last year, astronauts sent back an average of 66,912 images per month! During today’s long hours of daylight, we expect the crew to send back about 656 images. But with Expedition 59 astronauts David Saint-Jacques (CSA), Anne McClain (NASA), and Oleg Kononenko (RKA) hard at work preparing to return to Earth on Monday, that number might be a little less.
Say you’re feeling left out after seeing the family dinners and want to join the crew. Would you have enough daylight to travel to the ISS and back on the longest day of the year? Yes, but only if you’re speedy enough, and plan your launch just right. With the current fastest launch-to-docking time of about six hours, you could complete two-and-a-half flights to the ISS today between sunrise and sunset.
When returning from orbit, it’s a longer ordeal. After the Expedition 59 trio arrives on Earth Monday night, they’ll have to travel from Kazakhstan to Houston to begin their post-flight activities. Their journey should take about 18 hours and 30 minutes, just a few hours longer than the hours of daylight we’ll see today.
Happy solstice! Make sure to tune in with us on Monday night for live coverage of the return of Expedition 59. Until then, enjoy the longest day of the year!
Make sure to follow us on Tumblr for your regular dose of space: http://nasa.tumblr.com.
What, in your opinion, is Perseverance's most groundbreaking experiment/ instrument?
Technology drives exploration. For 60 years, we have advanced technology to meet the rigorous needs of our missions. From GPS navigation to water filtration systems, our technologies developed for space improve your daily life on Earth. We continue to innovate and explore. Since we opened for business on Oct. 1, 1958, our history tells a story of exploration, innovation and discoveries. The next 60 years, that story continues. Learn more: https://www.nasa.gov/60
Make sure to follow us on Tumblr for your regular dose of space: http://nasa.tumblr.com.
Gravity has been making waves - literally. Earlier this month, the Nobel Prize in Physics was awarded for the first direct detection of gravitational waves two years ago. But astronomers just announced another huge advance in the field of gravitational waves - for the first time, we’ve observed light and gravitational waves from the same source.
There was a pair of orbiting neutron stars in a galaxy (called NGC 4993). Neutron stars are the crushed leftover cores of massive stars (stars more than 8 times the mass of our sun) that long ago exploded as supernovas. There are many such pairs of binaries in this galaxy, and in all the galaxies we can see, but something special was about to happen to this particular pair.
Each time these neutron stars orbited, they would lose a teeny bit of gravitational energy to gravitational waves. Gravitational waves are disturbances in space-time - the very fabric of the universe - that travel at the speed of light. The waves are emitted by any mass that is changing speed or direction, like this pair of orbiting neutron stars. However, the gravitational waves are very faint unless the neutron stars are very close and orbiting around each other very fast.
As luck would have it, the teeny energy loss caused the two neutron stars to get a teeny bit closer to each other and orbit a teeny bit faster. After hundreds of millions of years, all those teeny bits added up, and the neutron stars were *very* close. So close that … BOOM! … they collided. And we witnessed it on Earth on August 17, 2017.
Credit: National Science Foundation/LIGO/Sonoma State University/A. Simonnet
A couple of very cool things happened in that collision - and we expect they happen in all such neutron star collisions. Just before the neutron stars collided, the gravitational waves were strong enough and at just the right frequency that the National Science Foundation (NSF)’s Laser Interferometer Gravitational-Wave Observatory (LIGO) and European Gravitational Observatory’s Virgo could detect them. Just after the collision, those waves quickly faded out because there are no longer two things orbiting around each other!
LIGO is a ground-based detector waiting for gravitational waves to pass through its facilities on Earth. When it is active, it can detect them from almost anywhere in space.
The other thing that happened was what we call a gamma-ray burst. When they get very close, the neutron stars break apart and create a spectacular, but short, explosion. For a couple of seconds, our Fermi Gamma-ray Telescope saw gamma-rays from that explosion. Fermi’s Gamma-ray Burst Monitor is one of our eyes on the sky, looking out for such bursts of gamma-rays that scientists want to catch as soon as they’re happening.
And those gamma-rays came just 1.7 seconds after the gravitational wave signal. The galaxy this occurred in is 130 million light-years away, so the light and gravitational waves were traveling for 130 million years before we detected them.
After that initial burst of gamma-rays, the debris from the explosion continued to glow, fading as it expanded outward. Our Swift, Hubble, Chandra and Spitzer telescopes, along with a number of ground-based observers, were poised to look at this afterglow from the explosion in ultraviolet, optical, X-ray and infrared light. Such coordination between satellites is something that we’ve been doing with our international partners for decades, so we catch events like this one as quickly as possible and in as many wavelengths as possible.
Astronomers have thought that neutron star mergers were the cause of one type of gamma-ray burst - a short gamma-ray burst, like the one they observed on August 17. It wasn’t until we could combine the data from our satellites with the information from LIGO/Virgo that we could confirm this directly.
This event begins a new chapter in astronomy. For centuries, light was the only way we could learn about our universe. Now, we’ve opened up a whole new window into the study of neutron stars and black holes. This means we can see things we could not detect before.
The first LIGO detection was of a pair of merging black holes. Mergers like that may be happening as often as once a month across the universe, but they do not produce much light because there’s little to nothing left around the black hole to emit light. In that case, gravitational waves were the only way to detect the merger.
Image Credit: LIGO/Caltech/MIT/Sonoma State (Aurore Simonnet)
The neutron star merger, though, has plenty of material to emit light. By combining different kinds of light with gravitational waves, we are learning how matter behaves in the most extreme environments. We are learning more about how the gravitational wave information fits with what we already know from light - and in the process we’re solving some long-standing mysteries!
Want to know more? Get more information HERE.
Make sure to follow us on Tumblr for your regular dose of space: http://nasa.tumblr.com
Have you ever looked up at the night sky and wondered ... what other kinds of planets are out there? Our Transiting Exoplanet Survey Satellite (TESS) just spent its first year bringing us a step closer to exploring the planets around the nearest and brightest stars in the southern sky and is now doing the same in the north.
TESS has been looking for dips in the brightness of stars that could be a sign of something we call “transits.” A transit happens when a planet passes between its star and us. It’s like when a bug flies in front of a light bulb. You may not notice the tiny drop in brightness when the bug blocks some of the light from reaching your eyes, but a sensitive camera could. The cameras on TESS are designed to detect those tiny drops in starlight caused by a transiting planet many light-years away.
In the last year TESS has found 24 planets and more than 900 new candidate planets. And TESS is only halfway through its goal of mapping over three-fourths of our skies, which means there’s plenty more to discover!
TESS has been looking for planets around the closest, brightest stars because they will be the best planets to explore more thoroughly with future missions. We can even see a few of these stars with our own eyes, which means we’ve been looking at these planets for millions of years and didn’t even know it.
We spent thousands of years staring at our closest neighbor, the Moon, and asking questions: What is it like? Could we live there? What is it made of (perhaps cheese?). Of course, now we can travel to the Moon and explore it ourselves (turns out, not made of cheese).
But for the worlds TESS is discovering, the commute to answer those questions would be killer. It took 35 years for Voyager 1 to cross into interstellar space (the region between stars), and it’s zipping along at over 38,000 mph! At that rate it would take more than a half-a-million years to reach the nearest stars and planets that TESS is discovering.
While exploring these distant worlds in person isn’t an option, we have other ways of learning what they are like. TESS can tell us where a planet is, its size and its overall temperature, but observatories on the ground and in space like our upcoming James Webb Space Telescope will be able to learn even more — like whether or not a planet has an atmosphere and what it’s made of.
Here are a few of the worlds that our planet hunter discovered in the last year.
The first Earth-sized planet discovered by TESS is about 90% the size of our home planet and orbits a star 53 light-years away. The planet is called HD 21749 c (what a mouthful!) and is actually the second planet TESS has discovered orbiting that star, which you can see in the southern constellation Reticulum.
The planet may be Earth-sized, but it would not be a pleasant place to live. It’s very close to its star and could have a surface temperature of 800 degrees Fahrenheit, which would be like sitting inside a commercial pizza oven.
The other planet discovered in that star system, HD 21749 b, is about three times Earth’s size and orbits the star every 36 days. It has the longest orbit of any planet within 100 light-years of our solar system detected with TESS so far.
The planet is denser than Neptune, but isn’t made of rock. Scientists think it might be a water planet or have a totally new type of atmosphere. But because the planet isn’t ideal for follow-up study, for now we can only theorize what the planet is actually like. Could it be made of pudding? Maybe … but probably not.
One of the first planets TESS discovered, called LHS 3844 b, is roughly Earth’s size, but is so close to its star that it orbits in just 11 hours. For reference, Mercury, which is more than two and a half times closer to the Sun than we are, completes an orbit in just under three months.
Because the planet is so close to its star, the day side of the planet might get so hot that pools and oceans of magma form on its rocky surface, which would make for a rather unpleasant day at the beach.
The smallest planet TESS has discovered, called L 98-59 b, is between the size of Earth and Mars and orbits its star in a little over two days. Its star also hosts two other TESS-discovered worlds.
Because the planet lies so close to its star, it gets 22 times the radiation we get here on Earth. Yikes! It is also not located in its star’s habitable zone, which means there probably isn’t any liquid water on the surface. Those two factors make it an unlikely place to find life, but scientists believe it will be a good candidate for follow-up studies by other telescopes.
While TESS’s team is hunting for planets around close, bright stars, it’s also collecting information on all sorts of other things. From transits around dimmer, farther stars to other objects in our solar system and events outside our galaxy, data from TESS can help astronomers learn a lot more about the universe. Comets and black holes and supernovae, oh my!
Interested in joining the hunt? TESS’s data are released online, so citizen scientists around the world can help us discover new worlds and better understand our universe.
Stay tuned for TESS’s next year of science as it monitors the stars that more than 6.5 billion of us in the northern hemisphere see every night.
Make sure to follow us on Tumblr for your regular dose of space: http://nasa.tumblr.com.
In this image, NASA astronaut Sunita Williams, Expedition 32 flight engineer, appears to touch the bright Sun during the mission's third spacewalk outside the International Space Station. Japan Aerospace Exploration Agency astronaut Aki Hoshide is visible in the reflection of Williams' helmet visor.
Today, April 12, is the International Day of Human Space Flight—marking Yuri Gagarin's first flight in 1961, and the first space shuttle launch in 1981.
As we honor global collaboration in exploration, we're moving forward to the Moon & Mars under the Artemis Accords.
Sign up to send your name around the Moon aboard Artemis I at go.nasa.gov/wearegoing.
Welcome to the new, official NASA Tumblr. We’re going to be giving you a regular dose of space here. Follow along and join us as we share information, images and video about our mission of exploration and discovery. First up, check out the moon photobombing Earth in this new animated gif. The far side of the moon, illuminated by the sun, is seen as it crosses between our 'EPIC' camera on the Deep Space Climate Observatory (DSCOVR) satellite, and the Earth - one million miles away. Check it out: http://go.nasa.gov/1Dq0IO9
Did you know that "We’re With You When You Fly”? Thanks to our advancements in aeronautics, today’s aviation industry is better equipped than ever to safely and efficiently transport millions of passengers and billions of dollars worth of freight to their destinations. In fact, every U.S. Aircraft flying today and every U.S. air traffic control tower uses NASA-developed technology in some way. Here are some of our objectives in aeronautics:
Making Flight Greener
From reducing fuel emissions to making more efficient flight routes, we’re working to make flight greener. We are dedicated to improving the design of airplanes so they are more Earth friendly by using less fuel, generating less pollution and reducing noise levels far below where they are today.
Getting you safely home faster
We work with the Federal Aviation Administration to provide air traffic controllers with new tools for safely managing the expected growth in air traffic across the nation. For example, testing continues on a tool that controllers and pilots can use to find a more efficient way around bad weather, saving thousands of pounds of fuel and an average of 27 minutes flying time per tested flight. These and other NASA-developed tools help get you home faster and support a safe, efficient airspace.
Seeing Aviation’s Future
Here at NASA, we’re committed to transforming aviation through cutting edge research and development. From potential airplanes that could be the first to fly on Mars, to testing a concept of a battery-powered plane, we’re always thinking of what the future of aviation will look like.
Make sure to follow us on Tumblr for your regular dose of space: http://nasa.tumblr.com
Explore the universe and discover our home planet with the official NASA Tumblr account
1K posts