Our newest communications satellite, named the Tracking and Data Relay Satellite-M or TDRS-M, launches Aug. 18 aboard an Atlas V rocket from our Kennedy Space Center in Florida. It will be the 13th TDRS satellite and will replenish the fleet of satellites supporting the Space Network, which provides nearly continuous global communications services to more than 40 of our missions.
Communicating from space wasn’t always so easy. During our third attempt to land on the moon in 1970, the Apollo 13 crew had to abort their mission when the spacecraft’s oxygen tank suddenly exploded and destroyed much of the essential equipment onboard. Made famous in the movie ‘Apollo 13’ by Ron Howard and starring Tom Hanks, our NASA engineers on the ground talked to the crew and fixed the issue. Back in 1970 our ground crew could only communicate with their ground teams for 15 percent of their orbit – adding yet another challenge to the crew. Thankfully, our Apollo 13 astronauts survived and safely returned to Earth.
Now, our astronauts don’t have to worry about being disconnected from their teams! With the creation of the TDRS program in 1973, space communications coverage increased rapidly from 15 percent coverage to 85 percent coverage. And as we’ve continued to add TDRS spacecraft, coverage zoomed to over 98 percent!
TDRS is a fleet of satellites that beam data from low-Earth-orbiting space missions to scientists on the ground. These data range from cool galaxy images from the Hubble Space Telescope to high-def videos from astronauts on the International Space Station! TDRS is operated by our Space Network, and it is thanks to these hardworking engineers and scientists that we can continuously advance our knowledge about the universe!
What’s up next in space comm? Only the coolest stuff ever! LASER BEAMS. Our scientists are creating ways to communicate space data from missions through lasers, which have the ability to transfer more data per minute than typical radio-frequency systems. Both radio-frequency and laser comm systems send data at the speed of light, but with laser comm’s ability to send more data at a time through infrared waves, we can receive more information and further our knowledge of space.
How are we initiating laser comm? Our Laser Communications Relay Demonstration is launching in 2019! We’re only two short years away from beaming space data through lasers! This laser communications demo is the next step to strengthen this technology, which uses less power and takes up less space on a spacecraft, leaving more power and room for science instruments.
Watch the TDRS launch live online at 8:03 a.m. EDT on Aug. 18: https://www.nasa.gov/nasalive
Join the conversation on Twitter: @NASA_TDRS and @NASALasercomm!
Make sure to follow us on Tumblr for your regular dose of space: http://nasa.tumblr.com
Series: Color Photograph Files, 1965 - 2002. Record Group 255: Records of the National Aeronautics and Space Administration, 1903 - 2006.
Apollo 13 was intended to be the third Apollo mission to land on the Moon. The craft was launched from Kennedy Space Center in Merritt Island, Florida on April 11, 1970. Two days into the flight, damaged wire insulation inside the oxygen tank in the service module ignited, causing an explosion which vented the oxygen tank into space. Without oxygen, the service module became inoperable and the lunar mission quickly turned into a mission to safely return the crew to Earth. The astronauts worked with Mission Control to shut down the command module in order to conserve the remaining oxygen, forcing all three astronauts into the lunar module. The astronauts continued to work with Mission Control to combat one technical failure after another until, on April 17, 1970, the crew landed safely in the South Pacific Ocean.
source: phillyarchives.tumblr.com
Food: everyone needs it to survive and in space there’s no exception. Let’s take a closer look at what astronauts eat while in space.
Since the start of human spaceflight, we’ve worked to improve the taste, texture and shelf life of food for our crews. Our food scientists are challenged with developing healthy menus that can meet all of the unique requirements for living and working in the extreme environment of space.
Consider the differences of living on Earth and in space. Food scientists must develop foods that will be easier to handle and consume in a microgravity environment. These food products require no refrigeration and provide the nutrition humans need to remain healthy during spaceflight.
Freeze drying food allows food to remain stable at ambient temperatures, while also significantly reducing the weight.
Astronauts use tortillas in many of their meals
Tortillas provide an edible wrapper to keep food from floating away. Why tortillas and not bread? Tortillas make far less crumbs and can be stored easier. Bread crumbs could potentially float around and get stuck in filters or equipment.
The first food eaten by an American astronaut in space: Applesauce
The first American astronaut to eat in space dined on applesauce squeezed from a no-frills, aluminum toothpaste-like tube. Since then, food technology has cooked up better ways to prepare, package and preserve space fare in a tastier, more appetizing fashion.
All food that is sent to the space station is precooked
Sending precooked food means that it requires no refrigeration and is either ready to eat or can be prepared simply by adding water or by heating. The only exception are the fruit and vegetables stowed in the fresh food locker.
Salt and pepper are used in liquid form on the International Space Station
Seasonings like salt and pepper have to be used in liquid form and dispensed through a bottle on the space station. If they were granulated, the particles would float away before they even reached the food.
Food can taste bland in space
Some people who live in space have said that food is not the same while in microgravity. Some say that it tastes bland, some do not like their favorite foods and some love to eat foods they would never eat on Earth. We believe this phenomenon is caused by something called “stuffy head” This happens when crew member’s heads get stopped up because blood collects in the upper part of the body. For this reason, hot sauce is used A LOT on the space station to make up for the bland flavor.
Astronaut ice cream is not actually eaten on the space station
Even though astronaut ice cream is sold in many science centers and enjoyed by many people on Earth, it’s not actually sent to the space station. That said, whenever there is space in a freezer heading to orbit, the astronauts can get real ice cream onboard!
Instead of bowls there are bags and cans
Most American food is stored in sealed bags, while most Russian food is kept in cans.
Here’s what the crew aboard the space station enjoyed during Thanksgiving in 2015:
Smoked Turkey
Candied Yams
Rehydratable Corn
Potatoes Au Gratin
Make sure to follow us on Tumblr for your regular dose of space: http://nasa.tumblr.com
Our solar system is huge, let us break it down for you. Here are a few things to know this week:
1. Say Farewell to a Comet Rider
After a successful and eventful adventure landing on a comet, no more signals will be received from the Rosetta mission's comet lander, Philae.
Send your goodbyes to Philae
2. Target Shooting
Using new software our very own Mars rover Curiosity can even choose its own rock targets for its laser spectrometer.
Find out how Curiosity selects its own targets
3. Flares for the Dramatic
Our sun recently emitted three mid-size solar flares, and the Solar Dynamics Observatory captured it all.
Watch the Show!
4. Bring the Heat
Jupiter's Great Red Spot may be the mysterious heat source behind the planet’s surprisingly high upper atmospheric temperatures. When Juno begins its science orbits, the Great Red Spot will be among its top targets.
Learn More
5. Cut and Dried
The gullies on today’s Red Planet were not cut by flowing liquid water, as previously thought, but rather by processes such as the freeze and thaw of carbon dioxide frost. New findings using data from our Mars Reconnaissance Orbiter provide a new picture of the cause,
Learn More
Make sure to follow us on Tumblr for your regular dose of space: http://nasa.tumblr.com
What advice do you have for Hispanic boys and girls who see themselves in you and are inspired by your achievements?
Did you know that "We’re With You When You Fly”? Thanks to our advancements in aeronautics, today’s aviation industry is better equipped than ever to safely and efficiently transport millions of passengers and billions of dollars worth of freight to their destinations. In fact, every U.S. Aircraft flying today and every U.S. air traffic control tower uses NASA-developed technology in some way. Here are some of our objectives in aeronautics:
Making Flight Greener
From reducing fuel emissions to making more efficient flight routes, we’re working to make flight greener. We are dedicated to improving the design of airplanes so they are more Earth friendly by using less fuel, generating less pollution and reducing noise levels far below where they are today.
Getting you safely home faster
We work with the Federal Aviation Administration to provide air traffic controllers with new tools for safely managing the expected growth in air traffic across the nation. For example, testing continues on a tool that controllers and pilots can use to find a more efficient way around bad weather, saving thousands of pounds of fuel and an average of 27 minutes flying time per tested flight. These and other NASA-developed tools help get you home faster and support a safe, efficient airspace.
Seeing Aviation’s Future
Here at NASA, we’re committed to transforming aviation through cutting edge research and development. From potential airplanes that could be the first to fly on Mars, to testing a concept of a battery-powered plane, we’re always thinking of what the future of aviation will look like.
Make sure to follow us on Tumblr for your regular dose of space: http://nasa.tumblr.com
New science is headed to the International Space Station aboard the SpaceX Dragon.
Investigations on this flight include a test of robotic technology for refueling spacecraft, a project to map the world’s forests and two student studies inspired by Marvel’s “Guardians of the Galaxy” series.
Learn more about the science heading into low-Earth orbit:
The Global Ecosystem Dynamics Investigation (GEDI) is an instrument to measure and map Earth’s tropical and temperate forests in 3D.
The Jedi knights may help protect a galaxy far, far away, but our GEDI will help us study and understand forest changes right here on Earth.
What’s cooler than cool? Cryogenic propellants, or ice-cold spacecraft fuel! Our Robotic Refueling Mission 3 (RRM3) will demonstrate technologies for storing and transferring these special liquids. By establishing ways to replenish this fuel supply in space, RRM3 could help spacecraft live longer and journey farther.
The mission’s techniques could even be applied to potential lunar gas stations at the Moon, or refueling rockets departing from Mars.
The Molecular Muscle investigation examines the molecular causes of muscle abnormalities from spaceflight in C. elgans, a roundworm and model organism.
This study could give researchers a better understanding of why muscles deteriorate in microgravity so they can improve methods to help crew members maintain their strength in space.
Perfect Crystals is a study to learn more about an antioxidant protein called manganese superoxide dismutase that protects the body from the effects of radiation and some harmful chemicals.
The station’s microgravity environment allows researchers to grow more perfectly ordered crystals of the proteins. These crystals are brought back to Earth and studied in detail to learn more about how the manganese superoxide dismutase works. Understanding how this protein functions may aid researchers in developing techniques to reduce the threat of radiation exposure to astronauts as well as prevent and treat some kinds of cancers on Earth.
SlingShot is a new, cost-effective commercial satellite deployment system that will be tested for the first time.
SlingShot hardware, two small CubeSats, and a hosted payload will be carried to the station inside SpaceX’s Dragon capsule and installed on a Cygnus spacecraft already docked to the orbiting laboratory. Later, Cygnus will depart station and fly to a pre-determined altitude to release the satellites and interact with the hosted payload.
Spaceflight appears to accelerate aging in both humans and mice. Rodent Research-8 (RR-8) is a study to understand the physiology of aging and the role it plays on the progression of disease in humans. This investigation could provide a better understanding of how aging changes the body, which may lead to new therapies for related conditions experienced by astronauts in space and people on Earth.
The MARVEL ‘Guardians of the Galaxy’ Space Station Challenge is a joint project between the U.S. National Laboratory and Marvel Entertainment featuring two winning experiments from a contest for American teenage students. For the contest, students were asked to submit microgravity experiment concepts that related to the Rocket and Groot characters from Marvel’s “Guardians of the Galaxy” comic book series.
Team Rocket: Staying Healthy in Space
If an astronaut suffers a broken tooth or lost filling in space, they need a reliable and easy way to fix it. This experiment investigates how well a dental glue activated by ultraviolet light would work in microgravity. Researchers will evaluate the use of the glue by treating simulated broken teeth and testing them aboard the station.
Team Groot: Aeroponic Farming in Microgravity
This experiment explores an alternative method for watering plants in the absence of gravity using a misting device to deliver water to the plant roots and an air pump to blow excess water away. Results from this experiment may enable humans to grow fruits and vegetables in microgravity, and eliminate a major obstacle for long-term spaceflight.
These investigation join hundreds of others currently happening aboard the station. For more info, follow @ISS_Research!
Make sure to follow us on Tumblr for your regular dose of space: http://nasa.tumblr.com
When our Space Launch System (SLS) rocket launches the Artemis missions to the Moon, it can have a top speed of more than six miles per second. Rockets and racecars are designed with speed in mind to accomplish their missions—but there’s more to speed than just engines and fuel. Learn more about the physics of going fast:
Take a look under the hood, so to speak, of our SLS mega Moon rocket and you’ll find that each of its four RS-25 engines have high-pressure turbopumps that generate a combined 94,400 horsepower per engine. All that horsepower creates more than 2 million pounds of thrust to help launch our four Artemis astronauts inside the Orion spacecraft beyond Earth orbit and onward to the Moon. How does that horsepower compare to a racecar? World champion racecars can generate more than 1,000 horsepower as they speed around the track.
As these vehicles start their engines, a series of special machinery is moving and grooving inside those engines. Turbo engines in racecars work at up to 15,000 rotations per minute, aka rpm. The turbopumps on the RS-25 engines rotate at a staggering 37,000 rpm. SLS’s RS-25 engines will burn for approximately eight minutes, while racecar engines generally run for 1 ½-3 hours during a race.
To use that power effectively, both rockets and racecars are designed to slice through the air as efficiently as possible.
While rockets want to eliminate as much drag as possible, racecars carefully use the air they’re slicing through to keep them pinned to the track and speed around corners faster. This phenomenon is called downforce.
Steering these mighty machines is a delicate process that involves complex mechanics.
Most racecars use a rack-and-pinion system to convert the turn of a steering wheel to precisely point the front tires in the right direction. While SLS doesn’t have a steering wheel, its powerful engines and solid rocket boosters do have nozzles that gimbal, or move, to better direct the force of the thrust during launch and flight.
Racecar drivers and astronauts are laser focused, keeping their sights set on the destination. Pit crews and launch control teams both analyze data from numerous sensors and computers to guide them to the finish line. In the case of our mighty SLS rocket, its 212-foot-tall core stage has nearly 1,000 sensors to help fly, track, and guide the rocket on the right trajectory and at the right speed. That same data is relayed to launch teams on the ground in real time. Like SLS, world-champion racecars use hundreds of sensors to help drivers and teams manage the race and perform at peak levels.
Knowing how to best use, manage, and battle the physics of going fast, is critical in that final lap. You can learn more about rockets and racecars here.
Make sure to follow us on Tumblr for your regular dose of space!
Just like your phone needs Wi-Fi or data services to text or call – NASA spacecraft need communication services.
Giant antennas on Earth and a fleet of satellites in space enable missions to send data and images back to our home planet and keep us in touch with our astronauts in space. Using this data, scientists and engineers can make discoveries about Earth, the solar system, and beyond. The antennas and satellites make up our space communications networks: the Near Space Network and Deep Space Network.
Check out the top ten moments from our space comm community:
1. Space communication networks helped the Artemis I mission on its historic journey to the Moon. From the launch pad to the Moon and back, the Near Space Network and Deep Space Network worked hand-in-hand to seamlessly support Artemis I. These networks let mission controllers send commands up to the spacecraft and receive important spacecraft health data, as well as incredible images of the Moon and Earth.
The Pathfinder Technology Demonstration 3 spacecraft with hosted TeraByte InfraRed Delivery (TBIRD) payload communicating with laser links down to Earth. Credit: NASA/Ames Research Center
2. Spacecraft can range in size – from the size of a bus to the size of a cereal box. In May 2022, we launched a record-breaking communication system the size of a tissue box. TBIRD showcases the benefits of a laser communications system, which uses infrared light waves rather than radio waves to communicate more data at once. Just like we have upgraded from 3G to 4G to 5G on our phones, we are upgrading its space communications capabilities by implementing laser comms!
3. The Deep Space Network added a new 34-meter (111-foot) antenna to continue supporting science and exploration missions investigating our solar system and beyond. Deep Space Station 53 went online in February 2022 at our Madrid Deep Space Communications Complex. It is the fourth of six antennas being added to expand the network’s capacity.
4. You’ve probably seen in the news that there are a lot of companies working on space capabilities. The Near Space Network is embracing the aerospace community’s innovative work and seeking out multiple partnerships. In 2022, we met with over 300 companies in hopes of beginning new collaborative efforts and increasing savings.
5. Similar to TBIRD, we're developing laser comms for the International Space Station. The terminal will show the benefits of laser comms while using a new networking technique called High Delay/Disruption Tolerant Networking that routes data four times faster than current systems. This year, engineers tested and proved the capability in a lab.
6. In 2021, we launched the James Webb Space Telescope, a state-of-the-art observatory to take pictures of our universe. This year, the Deep Space Network received the revolutionary first images of our solar system from Webb. The telescope communicates with the network’s massive antennas at three global complexes in Canberra, Australia; Madrid, Spain; and Goldstone, California.
7. Just like we use data services on our phone to communicate, we'll do the same with future rovers and astronauts exploring the Moon. In 2022, the Lunar LTE Studies project, or LunarLiTES, team conducted two weeks of testing in the harsh depths of the Arizona desert, where groundbreaking 4G LTE communications data was captured in an environment similar to the lunar South Pole. We're using this information to determine the best way to use 4G and 5G networking on the Moon.
8. A new Near Space Network antenna site was unveiled in Matjiesfontein, South Africa. NASA and the South African Space Agency celebrated a ground-breaking at the site of a new comms antenna that will support future Artemis Moon missions. Three ground stations located strategically across the globe will provide direct-to-Earth communication and navigation capabilities for lunar missions.
9. Quantum science aims to better understand the world around us through the study of extremely small particles. April 14, 2022, marked the first official World Quantum Day celebration, and we participated alongside other federal agencies and the National Quantum Coordination Office. From atomic clocks to optimizing laser communications, quantum science promises to greatly improve our advances in science, exploration, and technology.
10. We intentionally crashed a spacecraft into an asteroid to test technology that could one day be used to defend Earth from asteroids. The Double Asteroid Redirection Test, or DART, mission successfully collided with the asteroid Dimorphos at a rate of 4 miles per second (6.1 kilometers per second), with real-time video enabled by the Deep Space Network. Alongside communications and navigation support, the global network also supports planetary defense by tracking near-Earth objects.
We look forward to many more special moments connecting Earth to space in the coming year.
Make sure to follow us on Tumblr for your regular dose of space!
Take a deep breath. Feel the oxygen in your lungs. We have the ocean to thank for that! Over long time scales, between 50 and 70 percent of our planet's oxygen is produced by microscopic organisms living in the ocean.
Today is World Oceans Day! And as our planet’s climate continues to change, we want to understand how one of our biggest ecosystems is changing with it. Wondering how you can celebrate with NASA? We’ve got downloadable coloring pages and online coloring interactives to show how we study the ocean. Read on.
From Space to Sea
Download ocean missions coloring page here Download Sentinel-6 Michael Freilich coloring page here
We use planes, boats, Earth-observing satellites and much more to study the ocean and partner with organizations all over the world. Here are a few examples:
From Sea
The Export Processes in the Ocean from Remote Sensing (EXPORTS) is one way we study the ocean from the sea to study changes in the ocean’s carbon cycle. In May, scientists and crew conducted research on three ships in the Northern Atlantic Ocean. They hope to create models to better understand climate change patterns.
From Space
Launched last year, the Sentinel-6 Michael Freilich spacecraft began a five-and-a-half-year prime mission to collect the most accurate data yet on global sea level and how our oceans are rising in response to climate change. Sentinel-6 Michael Freilich is just one of many satellites monitoring the ocean from space. Together with other Earth-observing spacecraft, the mission will also collect precise data of atmospheric temperature and humidity to help improve weather forecasts and climate models.
Finding Eddies
Download Eddies Coloring Page The ocean is full of eddies – swirling water masses that look like hurricanes in the atmosphere. Eddies are often hot spots for biological activity that plays an important role in absorbing carbon. . We find eddies by looking for small changes in the height of the ocean surface, using multiple satellites continuously orbiting Earth. We also look at eddies up close, using ships and planes to study their role in the carbon cycle.
Monitoring Aerosols and Clouds
Clouds coloring interactive here
Aerosols coloring interactive here
Tiny particles in the air called aerosols interact with clouds. These interactions are some of the most poorly understood components of Earth's climate system. Clouds and aerosols can absorb, scatter or reflect incoming radiation -- heat and light from the Sun -- depending on their type, abundance and locations in the atmosphere. We’re building new instruments to better understand aerosols and contribute to air quality forecasts.
The Ocean in Living Color Download PACE coloring page here
The Plankton, Aerosol, Cloud, ocean Ecosystem (PACE) mission will continue and greatly advance observations of global ocean color, biogeochemistry, and ecology, as well as Earth’s carbon cycle and atmospheric aerosols and clouds. It’s set to launch in late 2023 to early 2024. Want to learn more? Click here to see how PACE will collect data and here to see what PACE will see through our coloring interactives. (Make sure to check out the hidden surprises in both!)
Exploring Ocean Worlds on Earth and Beyond
Download Clouds coloring page here
Using our understanding of oceans on Earth, we also study oceans on other planets. Mars, for example, contains water frozen in the ice caps or trapped beneath the soil. But there’s even more water out there. Planets and moons in our solar system and beyond have giant oceans on their surface. Saturn’s moon Enceladus is thought to have a massive ocean under its frozen surface, which sometimes sprays into space through massive fissures in the ice.
Learn more about ocean worlds here: nasa.gov/oceanworlds
Interested in learning more about how NASA studies oceans? Follow @NASAClimate, @NASAOcean and @NASAEarth.
You can also find all the coloring pages and interactives here.
Make sure to follow us on Tumblr for your regular dose of space: http://nasa.tumblr.com.
The Perseid meteor shower is the best of the year! It peaks on a Moonless summer night from 4 p.m. EST on August 12 until 4 a.m. EST on August 13.
Because the new Moon falls near the peak night, the days before and after the peak will also provide nice, dark skies. Your best window of observation is from a few hours after twilight until dawn, on the days surrounding the peak.
Unlike most meteor showers, which have a short peak of high meteor rates, the Perseids have a very broad peak, as Earth takes more than three weeks to plow through the wide trail of cometary dust from comet Swift-Tuttle.
The Perseids appear to radiate from the constellation Perseus, visible in the northern sky soon after sunset this time of year. Observers in mid-northern latitudes will have the best views.
You should be able to see some meteors from July 17 to August 24, with the rates increasing during the weeks before August 12 and decreasing after August 13.
Observers should be able to see between 60 and 70 per hour at the peak. Remember, you don't have to look directly at the constellation to see them. You can look anywhere you want to-even directly overhead.
Meteor showers like the Perseids are caused by streams of meteoroids hitting Earth's atmosphere. The particles were once part of their parent comet-or, in some cases, from an asteroid.
The parade of planets Venus, Jupiter, Saturn and Mars--and the Milky Way continue to grace the evening sky, keeping you and the mosquitoes company while you hunt for meteors.
Watch the full What’s Up for August Video:
There are so many sights to see in the sky. To stay informed, subscribe to our What’s Up video series on Facebook.
Make sure to follow us on Tumblr for your regular dose of space: http://nasa.tumblr.com
Explore the universe and discover our home planet with the official NASA Tumblr account
1K posts