Solar System: Things To Know This Week

Solar System: Things to Know This Week

Reaching out into space yields benefits on Earth. Many of these have practical applications — but there's something more than that. Call it inspiration, perhaps, what photographer Ansel Adams referred to as nature's "endless prospect of magic and wonder." 

Our ongoing exploration of the solar system has yielded more than a few magical images. Why not keep some of them close by to inspire your own explorations? This week, we offer 10 planetary photos suitable for wallpapers on your desktop or phone. Find many more in our galleries. These images were the result of audacious expeditions into deep space; as author Edward Abbey said, "May your trails be crooked, winding, lonesome, dangerous, leading to the most amazing view."

image

1. Martian Selfie

This self-portrait of NASA's Curiosity Mars rover shows the robotic geologist in the "Murray Buttes" area on lower Mount Sharp. Key features on the skyline of this panorama are the dark mesa called "M12" to the left of the rover's mast and pale, upper Mount Sharp to the right of the mast. The top of M12 stands about 23 feet (7 meters) above the base of the sloping piles of rocks just behind Curiosity. The scene combines approximately 60 images taken by the Mars Hand Lens Imager, or MAHLI, camera at the end of the rover's robotic arm. Most of the component images were taken on September 17, 2016.

800 x 600

1024 x 768

1280 x 1024

1600 x 1200

1280 x 800

1440 x 900

1920 x 1200

image

2. The Colors of Pluto

NASA's New Horizons spacecraft captured this high-resolution, enhanced color view of Pluto on July 14, 2015. The image combines blue, red and infrared images taken by the Ralph/Multispectral Visual Imaging Camera (MVIC). Pluto's surface sports a remarkable range of subtle colors, enhanced in this view to a rainbow of pale blues, yellows, oranges, and deep reds. Many landforms have their own distinct colors, telling a complex geological and climatological story that scientists have only just begun to decode.

800 x 600

1024 x 768

1280 x 1024

1600 x 1200

1280 x 800

1440 x 900

1920 x 1200

image

3. The Day the Earth Smiled

On July 19, 2013, in an event celebrated the world over, our Cassini spacecraft slipped into Saturn's shadow and turned to image the planet, seven of its moons, its inner rings — and, in the background, our home planet, Earth. This mosaic is special as it marks the third time our home planet was imaged from the outer solar system; the second time it was imaged by Cassini from Saturn's orbit, the first time ever that inhabitants of Earth were made aware in advance that their photo would be taken from such a great distance.

800 x 600

1024 x 768

1280 x 1024

1600 x 1200

1280 x 800

1440 x 900

1920 x 1200

image

4. Looking Back

Before leaving the Pluto system forever, New Horizons turned back to see Pluto backlit by the sun. The small world's haze layer shows its blue color in this picture. The high-altitude haze is thought to be similar in nature to that seen at Saturn's moon Titan. The source of both hazes likely involves sunlight-initiated chemical reactions of nitrogen and methane, leading to relatively small, soot-like particles called tholins. This image was generated by combining information from blue, red and near-infrared images to closely replicate the color a human eye would perceive.

800 x 600

1024 x 768

1280 x 1024

1600 x 1200

1280 x 800

1440 x 900

1920 x 1200

image

5. Catching Its Own Tail

A huge storm churning through the atmosphere in Saturn's northern hemisphere overtakes itself as it encircles the planet in this true-color view from Cassini. This picture, captured on February 25, 2011, was taken about 12 weeks after the storm began, and the clouds by this time had formed a tail that wrapped around the planet. The storm is a prodigious source of radio noise, which comes from lightning deep within the planet's atmosphere.

800 x 600

1024 x 768

1280 x 1024

1600 x 1200

1280 x 800

1440 x 900

1920 x 1200

image

6. The Great Red Spot

Another massive storm, this time on Jupiter, as seen in this dramatic close-up by Voyager 1 in 1979. The Great Red Spot is much larger than the entire Earth.

800 x 600

1024 x 768

1280 x 1024

1600 x 1200

1280 x 800

1440 x 900

1920 x 1200

image

7. More Stormy Weather

Jupiter is still just as stormy today, as seen in this recent view from NASA's Juno spacecraft, when it soared directly over Jupiter's south pole on February 2, 2017, from an altitude of about 62,800 miles (101,000 kilometers) above the cloud tops. From this unique vantage point we see the terminator (where day meets night) cutting across the Jovian south polar region's restless, marbled atmosphere with the south pole itself approximately in the center of that border. This image was processed by citizen scientist John Landino. This enhanced color version highlights the bright high clouds and numerous meandering oval storms.

800 x 600

1024 x 768

1280 x 1024

1600 x 1200

1280 x 800

1440 x 900

1920 x 1200

image

8. X-Ray Vision

X-rays stream off the sun in this image showing observations from by our Nuclear Spectroscopic Telescope Array, or NuSTAR, overlaid on a picture taken by our Solar Dynamics Observatory (SDO). The NuSTAR data, seen in green and blue, reveal solar high-energy emission. The high-energy X-rays come from gas heated to above 3 million degrees. The red channel represents ultraviolet light captured by SDO, and shows the presence of lower-temperature material in the solar atmosphere at 1 million degrees.

800 x 600

1024 x 768

1280 x 1024

1600 x 1200

1280 x 800

1440 x 900

1920 x 1200

image

9. One Space Robot Photographs Another

This image from NASA's Mars Reconnaissance Orbiter shows Victoria crater, near the equator of Mars. The crater is approximately half a mile (800 meters) in diameter. It has a distinctive scalloped shape to its rim, caused by erosion and downhill movement of crater wall material. Since January 2004, the Mars Exploration Rover Opportunity has been operating in the region where Victoria crater is found. Five days before this image was taken in October 2006, Opportunity arrived at the rim of the crater after a drive of more than over 5 miles (9 kilometers). The rover can be seen in this image, as a dot at roughly the "ten o'clock" position along the rim of the crater. (You can zoom in on the full-resolution version here.)

800 x 600

1024 x 768

1280 x 1024

1600 x 1200

1280 x 800

1440 x 900

1920 x 1200

image

10. Night Lights

Last, but far from least, is this remarkable new view of our home planet. Last week, we released new global maps of Earth at night, providing the clearest yet composite view of the patterns of human settlement across our planet. This composite image, one of three new full-hemisphere views, provides a view of the Americas at night from the NASA-NOAA Suomi-NPP satellite. The clouds and sun glint — added here for aesthetic effect — are derived from MODIS instrument land surface and cloud cover products.

Full Earth at night map

Americas at night

Discover more lists of 10 things to know about our solar system HERE.

Make sure to follow us on Tumblr for your regular dose of space: http://nasa.tumblr.com

More Posts from Nasa and Others

5 years ago

Neutron Stars Are Even Weirder Than We Thought

Let’s face it, it’s hard for rapidly-spinning, crushed cores of dead stars NOT to be weird. But we’re only beginning to understand how truly bizarre these objects — called neutron stars — are.

image

Neutron stars are the collapsed remains of massive stars that exploded as supernovae. In each explosion, the outer layers of the star are ejected into their surroundings. At the same time, the core collapses, smooshing more than the mass of our Sun into a sphere about as big as the island of Manhattan.

image

Our Neutron star Interior Composition Explorer (NICER) telescope on the International Space Station is working to discover the nature of neutron stars by studying a specific type, called pulsars. Some recent results from NICER are showing that we might have to update how we think about pulsars!

Here are some things we think we know about neutron stars:

Pulsars are rapidly spinning neutron stars ✔︎

Pulsars get their name because they emit beams of light that we see as flashes. Those beams sweep in and out of our view as the star rotates, like the rays from a lighthouse.

image

Pulsars can spin ludicrously fast. The fastest known pulsar spins 43,000 times every minute. That’s as fast as blender blades! Our Sun is a bit of a slowpoke compared to that — it takes about a month to spin around once.

The beams come from the poles of their strong magnetic fields ✔︎

Pulsars also have magnetic fields, like the Earth and Sun. But like everything else with pulsars, theirs are super-strength. The magnetic field on a typical pulsar is billions to trillions of times stronger than Earth’s!

image

Near the magnetic poles, the pulsar’s powerful magnetic field rips charged particles from its surface. Some of these particles follow the magnetic field. They then return to strike the pulsar, heating the surface and causing some of the sweeping beams we see.

The beams come from two hot spots… ❌❓✔︎ 🤷🏽

Think of the Earth’s magnetic field — there are two poles, the North Pole and the South Pole. That’s standard for a magnetic field.

image

On a pulsar, the spinning magnetic field attracts charged particles to the two poles. That means there should be two hot spots, one at the pulsar’s north magnetic pole and the other at its south magnetic pole.

This is where things start to get weird. Two groups mapped a pulsar, known as J0030, using NICER data. One group found that there were two hot spots, as we might have expected. The other group, though, found that their model worked a little better with three (3!) hot spots. Not two.

… that are circular … ❌❓✔︎ 🤷🏽

The particles that cause the hot spots follow the magnetic field lines to the surface. This means they are concentrated at each of the magnetic poles. We expect the magnetic field to appear nearly the same in any direction when viewed from one of the poles. Such symmetry would produce circular hot spots.

image

In mapping J0030, one group found that one of the hot spots was circular, as expected. But the second spot may be a crescent. The second team found its three spots worked best as ovals.

… and lie directly across from each other on the pulsar ❌❓✔︎ 🤷🏽

Think back to Earth’s magnetic field again. The two poles are on opposite sides of the Earth from each other. When astronomers first modeled pulsar magnetic fields, they made them similar to Earth’s. That is, the magnetic poles would lie at opposite sides of the pulsar.

image

Since the hot spots happen where the magnetic poles cross the surface of the pulsar, we would expect the beams of light to come from opposite sides of the pulsar.

image

But, when those groups mapped J0030, they found another surprising characteristic of the spots. All of the hot spots appear in the southern half of the pulsar, whether there were two or three of them.

image

This also means that the pulsar’s magnetic field is more complicated than our initial models!

J0030 is the first pulsar where we’ve mapped details of the heated regions on its surface. Will others have similarly bizarre-looking hotspots? Will they bring even more surprises? We’ll have to stay tuned to NICER find out!

And check out the video below for more about how this measurement was done.

Make sure to follow us on Tumblr for your regular dose of space: http://nasa.tumblr.com.


Tags
8 years ago

Solar System: Things to Know This Week

Celebrate with us as our Opportunity rover turns 13, view art from our fans and more!

1. All Grown Up

After exceeding her 90-day mission and design parameters many times over, our plucky little rover Opportunity turns 13 years old on the Red Planet. She’s officially a teenager!

2. People’s Space

image

The public contributes so much wonderful art that we decided to make a place to share it. Enjoy!

3. Ready for a Close Up

Solar System: Things To Know This Week

Our Juno spacecraft recently got a closer look at Jupiter’s Little Red Spot. The craft’s JunoCam imager snapped this shot of Jupiter's northern latitudes on December 2016, as the spacecraft performed a close flyby of the gas giant. The spacecraft was at an altitude of 10,300 miles above Jupiter's cloud tops.

4. A New Test for Life on Other Planets 

image

A simple chemistry method could vastly enhance how scientists search for signs of life on other planets. The test uses a liquid-based technique known as capillary electrophoresis to separate a mixture of organic molecules into its components. It was designed specifically to analyze for amino acids, the structural building blocks of all life on Earth.

5. Blurring the Line Between Asteroid and Comet  

image

Our NEOWISE mission recently discovered some celestial objects traveling through our neighborhood, including one on the blurry line between asteroid and comet. An object called 2016 WF9 was detected by the NEOWISE project in November 2016 and it's in an orbit that takes it on a scenic tour of our solar system. A different object, discovered by NEOWISE a month earlier, is more clearly a comet, releasing dust as it nears the sun.

Discover the full list of 10 things to know about our solar system this week HERE.

Make sure to follow us on Tumblr for your regular dose of space: http://nasa.tumblr.com


Tags
3 years ago

June 10 Solar Eclipse in the Northern Hemisphere!

On June 10, people in parts of the northern hemisphere will have the chance to witness a solar eclipse.

June 10 Solar Eclipse In The Northern Hemisphere!

Watch the full visualization of the eclipse.

The June 10 eclipse is an annular solar eclipse, meaning that the Sun will never be completely covered by the Moon. The Moon’s orbit around the Earth is not a perfect circle, so throughout each month, the Moon’s distance from Earth varies. During an annular eclipse, the Moon is far enough away from Earth that the Moon appears smaller than the Sun in the sky. Since the Moon does not block the entire view of the Sun, it will look like a dark disk on top of a larger, bright disk. This creates what looks like a ring of fire around the Moon.

People in the narrow path of annularity — which, for this eclipse, cuts through Canada, Greenland, and northern Russia — will see the ring of fire effect as the Moon passes across the Sun.

June 10 Solar Eclipse In The Northern Hemisphere!

Credit: Dale Cruikshank

Outside this path of annularity, many people in the northern hemisphere have a chance to see a partial solar eclipse. The partial eclipse will fall on parts of the eastern United States, as well as northern Alaska. Some locations will only see a very small piece of the Sun covered, while locations closer to the path of annularity can see the Moon cover most of the Sun.

To learn which times the eclipse may be visible in certain areas, you can click anywhere on the map here. (Note that the maximum obscuration and maximum eclipse timing noted on this map may occur before sunrise in many locations.)

June 10 Solar Eclipse In The Northern Hemisphere!

This solar eclipse is a pair with the total lunar eclipse that happened on May 26.

Both solar and lunar eclipses happen when the Sun, Moon, and Earth line up in the same plane — a lunar eclipse happens when Earth is in the middle and casts its shadow on the Moon, and a solar eclipse happens when the Moon is in the middle and casts its shadow on Earth. The Moon’s orbit is tilted, so it’s usually too high or too low for this alignment to work out.

June 10 Solar Eclipse In The Northern Hemisphere!

The May 26 lunar eclipse was a supermoon lunar eclipse, meaning that the full moon happened while the Moon was near its closest point to Earth, making the Moon appear larger in the sky. The solar eclipse happens at the opposite point of the Moon’s orbit, during the new moon — and in this case, the new moon happens near the Moon’s farthest point from Earth, making the Moon appear smaller and resulting in an annular (rather than total) solar eclipse.

How to watch the eclipse

From anywhere: Watch the eclipse online with us! Weather permitting, we’ll be sharing live telescope views of the partial eclipse courtesy of Luc Boulard of the Royal Astronomical Society of Canada Sudbury Centre. Tune in starting at 5 a.m. EDT on June 10 at nasa.gov/live.

From the path of the annular or partial eclipse: Be sure to take safety precuations if you plan to watch in person!

It is never safe to look directly at the Sun's rays, even if the Sun is partly or mostly obscured, like during a partial or annular eclipse — doing so can severely harm your eyes. If you’re planning to watch the eclipse on June 10, you should use solar viewing glasses or an indirect viewing method at all points during the eclipse if you want to face the Sun. Solar viewing glasses, sometimes called eclipse glasses, are NOT regular sunglasses; regular sunglasses are not safe for viewing the Sun.

June 10 Solar Eclipse In The Northern Hemisphere!

If you don’t have solar viewing or eclipse glasses, you can use an alternate indirect method like a pinhole projector. Pinhole projectors shouldn’t be used to look at the Sun; instead, they’re an easy way to project an image of the Sun onto a surface. Read more about how to create a pinhole projector.

This is a sunrise eclipse in the contiguous U.S. At locations in the lower 48 states that can see the partial eclipse, the show starts before sunrise, when the Sun is still below the horizon. That means the best chance to see the eclipse in these locations will be during and shortly after sunrise, when the Sun is very low in the sky. In northern Alaska, the eclipse happens in the very early hours of June 10 when the Sun is low on the horizon.

Bottom line: If you’re trying to watch the eclipse in the contiguous U.S., look for a location with a clear view of the horizon to the northeast, and plan to watch starting at sunrise with your solar filter or indirect viewer.

The next two eclipses in the continental U.S. are in 2023 and 2024. The annular solar eclipse of Oct. 14, 2023, will cut from Oregon to Texas, and the total solar eclipse of April 8, 2024, will pass from Texas to Maine. Keep up with the latest on eclipses and eclipse science at nasa.gov/eclipse.

Make sure to follow us on Tumblr for your regular dose of space: http://nasa.tumblr.com.


Tags
8 years ago
"A Classic That I Never Get Tired Of: The Orange Solar Panel In Front Of The Blue–white Background

"A classic that I never get tired of: the orange solar panel in front of the blue–white background and the curvature of Earth" wrote astronaut Thomas Pesquet (@thom_astro) of the European Space Agency from aboard the International Space Station. 

The space station serves as the world's leading laboratory for conducting cutting-edge microgravity research, and is the primary platform for technology development and testing in space to enable human and robotic exploration of destinations beyond low-Earth orbit, including Mars. 

Credit: NASA/ESA


Tags
5 years ago

Moving at the Speed of Arctic Ice

Time-lapses taken from space can help track how Earth’s polar regions are changing, watching as glaciers retreat and accelerate, and ice sheets melt over decades.

image

Using our long data record and a new computer program, we can watch Alaskan glaciers shift and flow every year since 1972. Columbia Glacier, which was relatively stable in the 1970s, has since retreated rapidly as the climate continues to warm.

image

The Malaspina Glacier has pulsed and spread and pulsed again. The flashes and imperfect frames in these time-lapses result from the need for cloud-free images from each year, and the technology limitations of the early generation satellites.

image

In Greenland, glaciers are also reacting to the warming climate. Glaciers are essentially frozen rivers, flowing across land. As they get warmer, they flow faster and lose more ice to the ocean. On average, glaciers in Greenland have retreated about 3 miles between 1985 and 2018. The amount of ice loss was fairly consistent for the first 15 years of the record, but started increasing around 2000.

image

Warmer temperatures also affect Greenland farther inland, where the surface of ice sheets and glaciers melts, forming lakes that can be up to 3 miles across. Over the last 20 years, the number of meltwater lakes forming in Greenland increased 27% and appeared at higher elevations, where temperatures were previously too cold for melt.

image

Whether they're studying how ice flows into the water, or how water pools atop ice, scientists are investigating some of the many aspects of how climate affects Earth's polar regions. 

For more information, visit climate.nasa.gov.

Make sure to follow us on Tumblr for your regular dose of space: http://nasa.tumblr.com.


Tags
7 years ago

What is so special about the solar eclipse to you??

Huh, that’s a very good question and I probably answer it differently each time I get asked it. I love the fact that in totality you can see the solar atmosphere and get a chance to see the magnetic field structure of the Sun. This is something that you can’t normally do. I also love the idea that we’re going to be able to test a bunch of ionospheric models with the help of citizen scientist! This again is a very unique opportunity! But probably the thing that seems so special about this particular eclipse is seeing how excited everyone is about it! Most days I sit in my office working on my science (which I think is the best science and most interesting thing in the world- but I’m probably biased about that) and not too many other people in the world are all that excited about it. But with the eclipse, I get to share how cool this science is, and it’s amazing to see everyone get involved! 


Tags
7 years ago

The Moon in Motion

Happy New Year! And happy supermoon! Tonight, the Moon will appear extra big and bright to welcome us into 2018 – about 6% bigger and 14% brighter than the average full Moon. And how do we know that? Well, each fall, our science visualizer Ernie Wright uses data from the Lunar Reconnaissance Orbiter (LRO) to render over a quarter of a million images of the Moon. He combines these images into an interactive visualization, Moon Phase and Libration, which depicts the Moon at every day and hour for the coming year. 

image

Want to see what the Moon will look like on your birthday this year? Just put in the date, and even the hour (in Universal Time) you were born to see your birthday Moon.

Our Moon is quite dynamic. In addition to Moon phases, our Moon appears to get bigger and smaller throughout the year, and it wobbles! Or at least it looks that way to us on Earth. This wobbling is called libration, from the Latin for ‘balance scale’ (libra). Wright relies on LRO maps of the Moon and NASA orbit calculations to create the most accurate depiction of the 6 ways our Moon moves from our perspective.

1. Phases

image

The Moon phases we see on Earth are caused by the changing positions of the Earth and Moon relative to the Sun. The Sun always illuminates half of the Moon, but we see changing shapes as the Moon revolves around the Earth. Wright uses a software library called SPICE to calculate the position and orientation of the Moon and Earth at every moment of the year. With his visualization, you can input any day and time of the year and see what the Moon will look like!

2. Shape of the Moon

image

Check out that crater detail! The Moon is not a smooth sphere. It’s covered in mountains and valleys and thanks to LRO, we know the shape of the Moon better than any other celestial body in the universe. To get the most accurate depiction possible of where the sunlight falls on the lunar surface throughout the month, Wright uses the same graphics software used by Hollywood design studios, including Pixar, and a method called ‘raytracing’ to calculate the intricate patterns of light and shadow on the Moon’s surface, and he checks the accuracy of his renders against photographs of the Moon he takes through his own telescope.

image

3. Apparent Size 

image

The Moon Phase and Libration visualization shows you the apparent size of the Moon. The Moon’s orbit is elliptical, instead of circular - so sometimes it is closer to the Earth and sometimes it is farther. You’ve probably heard the term “supermoon.” This describes a full Moon at or near perigee (the point when the Moon is closest to the Earth in its orbit). A supermoon can appear up to 14% bigger and brighter than a full Moon at apogee (the point when the Moon is farthest from the Earth in its orbit). 

Our supermoon tonight is a full Moon very close to perigee, and will appear to be about 14% bigger than the July 27 full Moon, the smallest full Moon of 2018, occurring at apogee. Input those dates into the Moon Phase and Libration visualization to see this difference in apparent size!

4. East-West Libration

Over a month, the Moon appears to nod, twist, and roll. The east-west motion, called ‘libration in longitude’, is another effect of the Moon’s elliptical orbital path. As the Moon travels around the Earth, it goes faster or slower, depending on how close it is to the Earth. When the Moon gets close to the Earth, it speeds up thanks to an additional pull from Earth’s gravity. Then it slows down, when it’s farther from the Earth. While this speed in orbital motion changes, the rotational speed of the Moon stays constant. 

This means that when the Moon moves faster around the Earth, the Moon itself doesn’t rotate quite enough to keep the same exact side facing us and we get to see a little more of the eastern side of the Moon. When the Moon moves more slowly around the Earth, its rotation gets a little ahead, and we see a bit more of its western side.

5. North-South Libration

image

The Moon also appears to nod, as if it were saying “yes,” a motion called ‘libration in latitude’. This is caused by the 5 degree tilt of the Moon’s orbit around the Earth. Sometimes the Moon is above the Earth’s northern hemisphere and sometimes it’s below the Earth’s southern hemisphere, and this lets us occasionally see slightly more of the northern or southern hemispheres of the Moon! 

6. Axis Angle

image

Finally, the Moon appears to tilt back and forth like a metronome. The tilt of the Moon’s orbit contributes to this, but it’s mostly because of the 23.5 degree tilt of our own observing platform, the Earth. Imagine standing sideways on a ramp. Look left, and the ramp slopes up. Look right and the ramp slopes down. 

Now look in front of you. The horizon will look higher on the right, lower on the left (try this by tilting your head left). But if you turn around, the horizon appears to tilt the opposite way (tilt your head to the right). The tilted platform of the Earth works the same way as we watch the Moon. Every two weeks we have to look in the opposite direction to see the Moon, and the ground beneath our feet is then tilted the opposite way as well.

So put this all together, and you get this:

Beautiful isn’t it? See if you can notice these phenomena when you observe the Moon. And keep coming back all year to check on the Moon’s changing appearance and help plan your observing sessions.

Follow @NASAMoon on Twitter to keep up with the latest lunar updates. 

Make sure to follow us on Tumblr for your regular dose of space: http://nasa.tumblr.com.


Tags
6 years ago

Exploring the Infrared Universe

image

The universe is filled with billions upon billions of stars. Look up at the night sky, and you can see a small fraction of them, each appearing as a tiny pinprick of light against the inky blackness of space. But did you know there’s more to space than our eyes can see? To observe the hidden cosmos, we use telescopes that can see in the infrared. How do stars and planets form? How do black holes feast? How does matter escape galaxies? These are all questions we can begin to answer by exploring space in this wavelength of light. The infrared views captured by SOFIA, the world’s largest flying observatory, have helped us uncover mysterious objects and phenomena in our galaxy and beyond! The findings are changing our understanding of the way in which the universe works. Here are five cool scientific discoveries made by the mission.

We learned that cosmic dust — a building block of stars and planets — can survive the powerful blast from an exploding star.

image

We observed how material can be transported from deep inside a galaxy into intergalactic space.

image

We discovered that a newborn star can prevent the birth of new stars in its cosmic neighborhood. 

Exploring The Infrared Universe

We found magnetic fields help feed hungry black holes...

image

...and can disrupt the formation of new stars.

image

SOFIA is a modified Boeing 747SP aircraft that allows astronomers to study the solar system and beyond in ways that are not possible with ground-based telescopes. Learn more about the mission: www.nasa.gov/sofia

Make sure to follow us on Tumblr for your regular dose of space: http://nasa.tumblr.com.


Tags
8 years ago

13 Reasons to Have an Out of This World Friday (the 13th)

1. Know that not all of humanity is bound to the ground

image

Since 2000, the International Space Station has been continuously occupied by humans. There, crew members live and work while conducting important research that benefits life on Earth and will even help us eventually travel to deep space destinations, like Mars.

2. Smart people are up all night working in control rooms all over NASA to ensure that data keeps flowing from our satellites and spacecraft

image

Our satellites and spacecraft help scientists study Earth and space. Missions looking toward Earth provide information about clouds, oceans, land and ice. They also measure gases in the atmosphere, such as ozone and carbon dioxide, and the amount of energy that Earth absorbs and emits. And satellites monitor wildfires, volcanoes and their smoke.

image

Satellites and spacecraft that face toward space have a variety of jobs. Some watch for dangerous rays coming from the sun. Others explore asteroids and comets, the history of stars, and the origin of planets. Some fly near or orbit other planets. These spacecraft may look for evidence of water on Mars or capture close-up pictures of Saturn’s rings.

3. The spacecraft, rockets and systems developed to send astronauts to low-Earth orbit as part of our Commercial Crew Program is also helping us get to Mars

Changes to the human body during long-duration spaceflight are significant challenges to solve ahead of a mission to Mars and back. The space station allows us to perform long duration missions without leaving Earth’s orbit. 

image

Although they are orbiting Earth, space station astronauts spend months at a time in near-zero gravity, which allows scientists to study several physiological changes and test potential solutions. The more time they spend in space, the more helpful the station crew members can be to those on Earth assembling the plans to go to Mars.

4. Two new science missions will travel where no spacecraft has gone before…a Jupiter Trojan asteroid and a giant metal asteroid!

image

We’ve selected two missions that have the potential to open new windows on one of the earliest eras in the history of our solar system – a time less than 10 million years after the birth of our sun!

image

The first mission, Lucy, will visit six of Jupiter’s mysterious Trojan asteroids. The Trojans are thought to be relics of a much earlier era in the history of the solar system, and may have formed far beyond Jupiter’s current orbit.

image

The second mission, Psyche, will study a unique metal asteroid that’s never been visited before. This giant metal asteroid, known as 16 Psyche, is about three times farther away from the sun than is the Earth. Scientists wonder whether Psyche could be an exposed core of an early planet that could have been as large as Mars, but which lost its rocky outer layers due to a number of violent collisions billions of years ago.

5. Even astronauts eat their VEGGIES’s

NASA astronaut Shane Kimbrough collected the third and final harvest of the latest round of the Veggie investigation, testing the capability to grow fresh vegetables on the International Space Station. 

image

Understanding how plants respond to microgravity is an important step for future long-duration space missions, which will require crew members to grow their own food. Crew members have previously grown lettuce and flowers in the Veggie facility. This new series of the study expands on previous validation tests.

6. When you feel far away from home, you can think of the New Horizons spacecraft as it heads toward the Kuiper Belt, and the twin Voyager spacecraft are beyond the influence of our sun…billions of miles away 

image

Our New Horizons spacecraft completed its Pluto flyby in July 2015 and has continued on its way toward the Kuiper Belt. The spacecraft continues to send back important data as it travels toward deeper space at more than 32,000 miles per hour, and is nearly 3.2 billion miles from Earth.

image

In addition to New Horizons, our twin Voyager 1 and 2 spacecraft are exploring where nothing from Earth has flown before. Continuing on their more-than-37-year journey since their 1977 launches, they are each much farther away from Earth and the sun than Pluto. In August 2012, Voyager 1 made the historic entry into interstellar space, the region between the stars, filled with material ejected by the death of nearby stars millions of years ago.

7. Earth has a magnetic field that largely protects it from the solar wind stripping away out atmosphere…unlike Mars

image

Findings from our MAVEN mission have identified the process that appears to have played a key role in the transition of the Martian climate from an early, warm and wet environment to the cold, arid planet Mars is today. MAVEN data have enabled researchers to determine the rate at which the Martian atmosphere currently is losing gas to space via stripping by the solar wind. Luckily, Earth has a magnetic field that largely protects it from this process. 

8. There are humans brave enough to not only travel in space, but venture outside the space station to perform important repairs and updates during spacewalks

image

Spacewalks are important events where crew members repair, maintain and upgrade parts of the International Space Station. These activities can also be referred to as EVAs – Extravehicular Activities. Not only do spacewalks require an enormous amount of work to prepare for, but they are physically demanding on the astronauts. They are working in the vacuum of space in only their spacewalking suit. 

image

When on a spacewalk, astronauts use safety tethers to stay close to their spacecraft. One end of the tether is hooked to the spacewalker, while the other end is connected to the vehicle. Spacewalks typically last around 6.5 hours, but can be extended to 7 or 8 hours, if necessary.

9. We’re working to create new aircraft that will dramatically reduce fuel use, emissions and noise…meaning we could change the way you fly! 

image

The nation’s airlines could realize more than $250 billion dollars in savings in the near future thanks to green-related technologies that we are developing and refining. These new technologies could cut airline fuel use in half, pollution by 75% and noise to nearly one-eighth of today’s levels!

10. You can see a global image of your home planet…EVERY DAY

image

Once a day, we will post at least a dozen new color images of Earth acquired from 12 to 36 hours earlier. These images are taken by our EPIC camera from one million miles away on the Deep Space Climate Observatory (DSCOVR). Take a look HERE.

11. Employees of NASA have always been a mission driven bunch, who try to find answers that were previously unknown

The film “Hidden Figures,” focuses on the stories of Katherine Johnson, Mary Jackson and Dorothy Vaughan, African-American women who were essential to the success of early spaceflight. 

Today, we embrace their legacy and strive to include everyone who wants to participate in our ongoing exploration. In the 1960’s, we were on an ambitious journey to the moon, and the human computers portrayed in Hidden Figures helped get us there. Today, we are on an even more ambitious journey to Mars. We are building a vibrant, innovative workforce that reflects a vast diversity of discipline and thought, embracing and nurturing all the talent we have available, regardless of gender, race or other protected status. Take a look at our Modern Figures HERE.

12. A lot of NASA-developed tech has been transferred for use to the public 

Our Technology Transfer Program highlights technologies that were originally designed for our mission needs, but have since been introduced to the public market. HERE are a few spinoff technologies that you might not know about.

13. If all else fails, here’s an image of what we (Earth) and the moon look like from Mars  

image

From the most powerful telescope orbiting Mars comes a new view of Earth and its moon, showing continent-size detail on the planet and the relative size of the moon. The image combines two separate exposures taken on Nov. 20 by our High Resolution Imaging Science Experiment (HiRISE) camera on our Mars Reconnaissance Orbiter.

In the image, the reddish feature near the middle of the face of Earth is Australia.


Tags
9 years ago

What’s a Space Headache?

Headaches can be a common complaint during spaceflight. The Space Headaches experiment improves our understanding of such conditions, which helps in the development of methods to alleviate associated symptoms, and improve the well-being and performance of crew members in orbit. This can also improve our knowledge of similar conditions on Earth.

What’s A Space Headache?

Tags
Loading...
End of content
No more pages to load
  • sandra-alland
    sandra-alland liked this · 1 year ago
  • white-trash-balling
    white-trash-balling reblogged this · 5 years ago
  • kjothrae
    kjothrae liked this · 5 years ago
  • franzsandz
    franzsandz liked this · 5 years ago
  • cruger2984
    cruger2984 reblogged this · 6 years ago
  • classica-1750
    classica-1750 reblogged this · 6 years ago
  • classica-1750
    classica-1750 liked this · 6 years ago
  • transedwizard
    transedwizard liked this · 6 years ago
  • magicalmischel
    magicalmischel liked this · 6 years ago
  • qupidddd
    qupidddd liked this · 6 years ago
  • eckelt69-blog
    eckelt69-blog reblogged this · 6 years ago
  • veinele
    veinele liked this · 6 years ago
  • cutesyrat-blog
    cutesyrat-blog reblogged this · 6 years ago
  • cutesyrat-blog
    cutesyrat-blog liked this · 6 years ago
  • revolvingaboutanime
    revolvingaboutanime liked this · 6 years ago
  • lenalena009
    lenalena009 liked this · 6 years ago
  • naiyion
    naiyion liked this · 6 years ago
  • floralcyanide
    floralcyanide reblogged this · 7 years ago
  • xxbassmentxx
    xxbassmentxx liked this · 7 years ago
  • fleurdebach5-blog
    fleurdebach5-blog liked this · 7 years ago
  • captaingalaxy11231
    captaingalaxy11231 liked this · 7 years ago
  • eaglejeepster
    eaglejeepster liked this · 7 years ago
  • boohyhere
    boohyhere liked this · 7 years ago
  • mcbertock
    mcbertock reblogged this · 7 years ago
  • mcbertock
    mcbertock liked this · 7 years ago
  • audcmarie
    audcmarie liked this · 7 years ago
  • kalesockss
    kalesockss reblogged this · 7 years ago
  • alexxakawaii-blog
    alexxakawaii-blog liked this · 7 years ago
  • tomo-neko
    tomo-neko liked this · 7 years ago
  • jerseyd3vil
    jerseyd3vil liked this · 7 years ago
  • guiness4me
    guiness4me liked this · 7 years ago
  • imaginaryboox
    imaginaryboox liked this · 7 years ago
nasa - NASA
NASA

Explore the universe and discover our home planet with the official NASA Tumblr account

1K posts

Explore Tumblr Blog
Search Through Tumblr Tags