NOAA’s GOES-R weather satellite will soon be launched into space – becoming our nation’s most advanced geostationary satellite to date. So what does that mean for you? Here are six reasons to be excited about GOES-R:
Perhaps you turn on the TV or radio, or check your favorite weather website or smartphone weather app to get the latest forecast. No matter the platform of your weather forecast, the data and information for those forecasts come from NOAA’s National Weather Service (NWS).
Weather satellites, like the GOES satellites, are the backbone of NWS forecasts. GOES-R will be more advanced than any other weather satellite of its kind and could make the answer to the question “What’s the weather going to be?” more detailed and accurate both in the near term and further out into the future.
Do you live in an inland state, a state with a coastline or a state with a mountain range? Great, that’s all of you! Data from the GOES-R satellite will be a game changer for forecasters in your area.
Here’s why: satellites are fitted with instruments that observe weather and collect measurements. The primary instrument on the new GOES-R satellite will collect three times more data and provide four times better resolution and more than five times faster coverage than current satellites! This means the satellite can scan Earth’s Western Hemisphere every five minutes and as often as every 30 seconds in areas where severe weather forms, as compared to approximately every 30 minutes with the current GOES satellites. Pretty cool, right?
This expedited data means that forecasts will be timelier, with more “real-time” information in them, allowing NWS to make those warnings and alerts that much faster, thereby potentially saving lives.
And a faster forecast is a big deal for our economy. Commercial shipping and aviation are just two examples of industries that rely on up-to-date weather data for critical decisions about how to route ships and safely divert planes around storms.
We all depend on a power grid for virtually every aspect of modern life. But power grids are vulnerable to bursts of energy from the sun that can affect us on Earth.
Luckily, GOES-R will be sitting over 22,000 miles above us, and in addition to measuring weather on Earth, it will monitor incoming space weather.
How different will GOES-R be? Imagine going from your classic black and white TV to a new high definition one. It will enable NOAA to gather data using three times more channels, four times the resolution, five times faster than the current GOES satellites.
This faster, more accurate data means better observations of developing storms and other severe weather.
6. GOES-R will be a continuing a legacy
GOES-R may be the first of its kind, but it is the heir to a rich tradition of geostationary earth observation.
In fact, NOAA has continuously operated a GOES satellite for over 40 years. Since 1975, GOES satellites have taken well over 3 million images!
The GOES-R satellite is scheduled to launch Saturday, Nov. 19 at 5:42 p.m. EST aboard a United Launch Alliance Atlas V rocket. Liftoff will occur from our Kennedy Space Center in Florida.
Learn more about the mission: https://www.nesdis.noaa.gov/GOES-R-Mission
Article Credit: NOAA
Make sure to follow us on Tumblr for your regular dose of space: http://nasa.tumblr.com
do you have a favourite planet etc?
Of course Saturn brought its ring light.
On June 25, 2023, our James Webb Space Telescope made its first near-infrared observations of Saturn. The planet itself appears extremely dark at this infrared wavelength, since methane gas absorbs almost all the sunlight falling on the atmosphere. The icy rings, however, stay relatively bright, leading to Saturn’s unusual appearance in this image.
This new image of Saturn clearly shows details within the planet’s ring system, several of the planet’s moons (Dione, Enceladus, and Tethys), and even Saturn’s atmosphere in surprising and unexpected detail.
These observations from Webb are just a hint at what this observatory will add to Saturn’s story in the coming years as the science team delves deep into the data to prepare peer-reviewed results.
Download the full-resolution image, both labeled and unlabeled, from the Space Telescope Science Institute.
Make sure to follow us on Tumblr for your regular dose of space!
We’re committed to exploration and discovery, journeying to the Moon, Mars, and beyond. But how do we guide our missions on their voyage among the stars? Navigation engineers lead the way!
Using complex mathematical formulas, navigation experts calculate where our spacecraft are and where they’re headed. No matter the destination, navigating the stars is a complicated challenge that faces all our missions. But, we think you’re up to the task!
Our space navigation workbook lets you explore the techniques and mathematical concepts used by navigation engineers. The book delves into groundbreaking navigation innovations like miniaturized atomic clocks, autonomous navigation technologies, using GPS signals at the Moon, and guiding missions through the solar system with X-ray emissions from pulsars — a type of neutron star. It also introduces you to experts working with NASA’s Space Communications and Navigation program at Goddard Space Flight Center in Greenbelt, Maryland.
If you’re a high schooler who dreams of guiding a rover across the rocky surface of Mars or planning the trajectory of an observer swinging around Venus en route to the Sun, this workbook is for you! Download it today and start your adventure with NASA: https://go.nasa.gov/3i7Pzqr
We sent three suborbital sounding rockets right into the auroras above Alaska on the evening of March 1 local time from the Poker Flat Research Range north of Fairbanks, Alaska.
Sounding rockets are suborbital rockets that fly up in an arc and immediately come back down, with a total flight time around 20 minutes.
Though these rockets don’t fly fast enough to get into orbit around Earth, they still give us valuable information about the sun, space, and even Earth itself. Sounding rockets’ low-cost access to space is also ideal for testing instruments for future satellite missions.
Sounding rockets fly above most of Earth’s atmosphere, allowing them to see certain types of light – like extreme ultraviolet and X-rays – that don’t make it all the way to the ground because they are absorbed by the atmosphere. These kinds of light give us a unique view of the sun and processes in space.
The sun seen in extreme ultraviolet light by the Solar Dynamics Observatory satellite.
Of these three rockets, two were part of the Neutral Jets in Auroral Arcs mission, collecting data on winds influenced by the electric fields related to auroras. Sounding rockets are the perfect vehicle for this type of study, since they can fly directly through auroras – which exist in a region of Earth’s upper atmosphere too high for scientific balloons, but too low for satellites.
The third rocket that launched on March 1 was part of the ISINGLASS mission (short for Ionospheric Structuring: In Situ and Ground-based Low Altitude Studies). ISINGLASS included two rockets designed to launch into two different types of auroras in order to collect detailed data on their structure, with the hope of better understanding the processes that create auroras. The initial ISINGLASS rocket launched a few weeks earlier, on Feb. 22, also from the Poker Flat Research Range in Alaska.
Auroras are caused when charged particles trapped in Earth’s vast magnetic field are sent raining down into the atmosphere, usually triggered by events on the sun that propagate out into space.
Team members at the range had to wait until conditions were just right until they could launch – including winds, weather, and science conditions. Since these rockets were studying aurora, that means they had to wait until the sky was lit up with the Northern Lights.
Regions near the North and South Pole are best for studying the aurora, because the shape of Earth’s magnetic field naturally funnels aurora-causing particles near the poles.
But launching sensitive instruments near the Arctic Circle in the winter has its own unique challenges. For example, rockets have to be insulated with foam or blankets every time they’re taken outside – including while on the launch pad – because of the extremely low temperatures.
For more information on sounding rockets, visit www.nasa.gov/soundingrockets.
Make sure to follow us on Tumblr for your regular dose of space: http://nasa.tumblr.com
1. A Ceres of Fortunate Events
Our Dawn mission continues its exploration at Ceres, and the team is working with the data coming back to Earth, looking for explanations for the tiny world’s strange features. Follow Dawn’s expedition HERE.
2. Icy Moon Rendezvous
One of the most interesting places in the entire solar system is Saturn’s moon Enceladus, with its underground ocean and spectacular geyser plume. This month, the Cassini spacecraft will be buzzing close by Enceladus several times, the last such encounters of the mission. On October 14, Cassini will perform a targeted flyby at a distance of just 1,142 miles (1,838 kilometers) over the moon’s northern latitudes. Ride along with Cassini HERE.
3. Make Your Own Mars Walkabout
You can retrace Opportunity’s journey, see where the Curiosity rover is now, or even follow along with fictional astronaut Mark Watney from The Martian movie using the free online app MarsTrek. The app lets you zoom in on almost any part of the planet and see images obtained by our spacecraft, so you can plan your on Red Planet excursion. Take a hike HERE.
4. Elusive Features on Jupiter
New imagery from our Hubble Space Telescope is capturing details never before seen on Jupiter. High-resolution maps and spinning globes, rendered in the 4K Ultra HD format, reveal an elusive wave and changes to Jupiter’s Great Red Spot. Explore Jupiter HERE.
5. Mr. Blue Sky
Another week, another amazing picture from Pluto. The first color images of Pluto’s atmospheric hazes, returned by our New Horizons spacecraft last week, reveal that the hazes are blue. Who would have expected a blue sky in the Kuiper Belt? Most of the data collected during July’s Pluto flyby remains aboard the spacecraft, but the team publishes new batches of pictures and other findings on a weekly basis. Keep up with the latest HERE.
Make sure to follow us on Tumblr for your regular dose of space: http://nasa.tumblr.com
Flying 250 miles above the Earth aboard the International Space Station has given me the unique vantage point from which to view our planet. Spending a year in space has given me the unique opportunity to see a wide range of spectacular storm systems in space and on Earth.
The recent blizzard was remarkably visible from space. I took several photos of the first big storm system on Earth of year 2016 as it moved across the East Coast, Chicago and Washington D.C. Since my time here on the space station began in March 2015, I’ve been able to capture an array of storms on Earth and in space, ranging from hurricanes and dust storms to solar storms and most recently a rare thunder snowstorm.
Blizzard 2016
Hurricane Patricia 2015
Hurricane Joaquin 2015
Dust Storm in the Red Sea 2015
Dust Storm of Gobi Desert 2015
Aurora Solar Storm 2015
Aurora Solar Storm 2016
Thunderstorm over Italy 2015
Lightning and Aurora 2016
Rare Thunder Snowstorm 2016
Follow my Year In Space on Twitter, Facebook and Instagram.
Why's your suit so colorful?
i cannot wait for my first solar eclipse! what's your favorite part about these eclipses, alexa?
I’ve never seen totality as the last time it was in the US was before I was born. My favourite part of seeing videos and photos is definitely viewing the solar corona! But I’m looking forward to this one so that I can see sunspots during the partial eclipse! It’s these spots that are often the active regions on the Sun that produce solar storms that can ultimately drive the aurora here on Earth!
Welcome to our 6th annual annual Black Hole Friday! Check out these black hole deals from the past year as you prepare to head out for a shopping spree or hunker down at home to avoid the crowds.
First things first, black holes have one basic rule: They are so incredibly dense that to escape their surface you’d have to travel faster than light. But light speed is the cosmic speed limit . . . so nothing can escape a black hole’s surface!
Some black holes form when a very large star dies in a supernova explosion and collapses into a superdense object. This is even more jam-packed than the crowds at your local mall — imagine an object 10 times more massive than the Sun squeezed into a sphere with the diameter of New York City!
Some of these collapsing stars also signal their destruction with a huge burst of gamma rays. Our Fermi Gamma-ray Space Telescope and Neil Gehrels Swift Observatory continuously seek out the signals of these gamma ray bursts — black hole birth announcements that come to us from across the universe.
There are loads of stellar mass black holes, which are just a few 10s of times the Sun’s mass, in our home galaxy alone — maybe even hundreds of millions of them! Our Neutron Star Interior Composition Explorer, or NICER for short, experiment on the International Space Station has been studying some of those relatively nearby black holes.
Near one black hole called GRS 1915+105, NICER found disk winds — fast streams of gas created by heat or pressure. Scientists are still figuring out some puzzles about these types of wind. Where do they come from, for example? And do they change the way material falls into the black hole? Every new example of these disk winds helps astronomers get closer to answering those questions.
But stellar mass black holes aren’t the only ones out there. At the center of nearly every large galaxy lies a supermassive black hole — one with the mass of millions or billions of Suns smooshed into a region no bigger than our solar system.
There’s still some debate about how these monsters form, but astronomers agree that they certainly can collide and combine when their host galaxies collide and combine. Those black holes will have a lot of gas and dust around them. As that material is pulled into the black hole it will heat up due to friction and other forces, causing it to emit light. A group of scientists wondered what light it would produce and created this mesmerizing visualization showing that most of the light produced around these two black holes is UV or X-ray light. We can’t see those wavelengths with our own eyes, but many telescopes can. Models like this could help scientists know what to look for to spot a merger.
It also turns out that these supermassive black holes are the source of some of the brightest objects in the gamma ray sky! In a type of galaxy called active galactic nuclei (also called “AGN” for short) the central black hole is surrounded by a disk of gas and dust that’s constantly falling into the black hole.
But not only that, some of those AGN have jets of energetic particles that are shooting out from near the black hole at nearly the speed of light! Scientists are studying these jets to try to understand how black holes — which pull everything in with their huge amounts of gravity — provide the energy needed to propel the particles in these jets. If that jet is pointed directly at us, it can appear super-bright in gamma rays and we call it a blazar. These blazars make up more than half of the sources our Fermi space telescope sees.
Sometimes scientists get a two-for-one kind of deal when they’re looking for black holes. Our colleagues at the IceCube Neutrino Observatory actually caught a particle from a blazar 4 billion light-years away. IceCube lies a mile under the ice in Antarctica and uses the ice itself to detect neutrinos, tiny speedy particles that weigh almost nothing and rarely interact with anything. When IceCube caught a super-high-energy neutrino and traced its origin to a specific area of the sky, they turned to the astronomical community to pinpoint the source.
Our Fermi spacecraft scans the entire sky about every three hours and for months it had observed a blazar producing more gamma rays than usual. Flaring is a common characteristic in blazars, so this didn’t attract special attention. But when the alert from IceCube came through, scientists realized the neutrino and the gamma rays came from the same patch of sky! This method of using two or more kinds of signals to learn about one event or object is called multimessenger astronomy, and it’s helping us learn a lot about the universe.
Get more fun facts and information about black holes HERE and follow us on social media today for other cool facts and findings about black holes!
Make sure to follow us on Tumblr for your regular dose of space: http://nasa.tumblr.com.
Explore the universe and discover our home planet with the official NASA Tumblr account
1K posts