Solar System: Things To Know This Week

Solar System: Things to Know This Week

1. See Shadows on Jupiter

image

Jupiter dominates the evening sky this month, rising at sunset and setting at dawn. On the nights of March 14 and 15, Jovian moons Io and Europa will cross the planet's disk. When the planet is at opposition and the sun shines on Jupiter's moons, we can see the moons' shadows crossing the planet. There are actually 11 of these double shadow transits in March.

2. One Year of Dawn at Ceres

image

NASA's Dawn spacecraft gently slid into orbit around Ceres just over one year ago, becoming the first spacecraft to reach a dwarf planet. Since then, the spacecraft has delivered a wealth of images and other data that open an exciting new window to this previously unexplored body in the asteroid belt.

3. The Latest from Saturn

image

Days ago, on Mar. 11, 2016, Cassini's Ultraviolet Imaging Spectrograph (UVIS) watched as the plume of gas and icy particles from the moon Enceladus passed in front of the central star in Orion's Belt. Such observations, known as stellar occultations, provide information about the density and composition of the plume.

4. The Equinox is Upon Us

image

March 20 is the vernal equinox--the start of spring in the northern hemisphere, and the start of fall in the southern hemisphere. During the two equinoxes each year, the line between day and night is vertical, so all over the planet, the length of the day and night are nearly equal. For the rest of the year, the Earth's tilt angles the line between day and night, culminating with the solstices, in which the poles receive weeks of unending sunshine or darkness depending on the time of year.

5. Up Close with a Comet

image

Before Rosetta crash lands into comet Comet 67P/Churyumov-Gerasimenko in September, 2016, it will continue taking pictures and detailed measurements of this mysterious comet to study the origin of comets and how they relate to the origin of the solar system.

Want to learn more? Read our full list of the 10 things to know this week about the solar system HERE.

Make sure to follow us on Tumblr for your regular dose of space: http://nasa.tumblr.com

More Posts from Nasa and Others

6 years ago

NASA’s New Planet Hunter Reveals a Sky Full of Stars

image

NASA’s newest planet-hunting satellite — the Transiting Exoplanet Survey Satellite, or TESS for short — has just released its first science image using all of its cameras to capture a huge swath of the sky! TESS is NASA’s next step in the search for planets outside our solar system, called exoplanets.

image

This spectacular image, the first released using all four of TESS’ cameras, shows the satellite’s full field of view. It captures parts of a dozen constellations, from Capricornus (the Sea Goat) to Pictor (the Painter’s Easel) — though it might be hard to find familiar constellations among all these stars! The image even includes the Large and Small Magellanic Clouds, our galaxy’s two largest companion galaxies.

The science community calls this image “first light,” but don’t let that fool you — TESS has been seeing light since it launched in April. A first light image like this is released to show off the first science-quality image taken after a mission starts collecting science data, highlighting a spacecraft’s capabilities.

image

TESS has been busy since it launched from NASA’s Kennedy Space Center in Cape Canaveral, Florida. First TESS needed to get into position, which required a push from the Moon. After nearly a month in space, the satellite passed about 5,000 miles from the Moon, whose gravity gave it the boost it needed to get into a special orbit that will keep it stable and maximize its view of the sky.

image

During those first few weeks, we also got a sneak peek of the sky through one of TESS’s four cameras. This test image captured over 200,000 stars in just two seconds! The spacecraft was pointed toward the constellation Centaurus when it snapped this picture. The bright star Beta Centauri is visible at the lower left edge, and the edge of the Coalsack Nebula is in the right upper corner.

image

After settling into orbit, scientists ran a number of checks on TESS, including testing its ability to collect a set of stable images over a prolonged period of time. TESS not only proved its ability to perform this task, it also got a surprise! A comet named C/2018 N1 passed through TESS’s cameras for about 17 hours in July.

The images show a treasure trove of cosmic curiosities. There are some stars whose brightness changes over time and asteroids visible as small moving white dots. You can even see an arc of stray light from Mars, which is located outside the image, moving across the screen.

image

Now that TESS has settled into orbit and has been thoroughly tested, it’s digging into its main mission of finding planets around other stars. How will it spot something as tiny and faint as a planet trillions of miles away? The trick is to look at the star!

So far, most of the exoplanets we’ve found were detected by looking for tiny dips in the brightness of their host stars. These dips are caused by the planet passing between us and its star – an event called a transit. Over its first two years, TESS will stare at 200,000 of the nearest and brightest stars in the sky to look for transits to identify stars with planets.

image

TESS will be building on the legacy of NASA’s Kepler spacecraft, which also used transits to find exoplanets. TESS’s target stars are about 10 times closer than Kepler’s, so they’ll tend to be brighter. Because they're closer and brighter, TESS’s target stars will be ideal candidates for follow-up studies with current and future observatories.

image

TESS is challenging over 200,000 of our stellar neighbors to a staring contest! Who knows what new amazing planets we’ll find?

The TESS mission is led by MIT and came together with the help of many different partners. You can keep up with the latest from the TESS mission by following mission updates.

Make sure to follow us on Tumblr for your regular dose of space: http://nasa.tumblr.com. 


Tags
9 years ago

State of NASA

Over his tenure, President Obama has now invested $147 billion in America’s space program. Our elected leaders, on a bipartisan basis, have chosen to make this investment in our Agency, because they believe in our Journey to Mars and recognize that investments in NASA’s present are investments in America’s future.

Because the State of our NASA is strong, President Obama is recommending a $19 billion budget for the next year to carry out our ambitious exploration and scientific discovery plans. Here are the areas in which we’ll continue to invest:

Solar System and Beyond

image

As we explore our solar system and search for new worlds, we look to answer key questions about our home planet, neighboring planets in our solar system and the universe beyond.

Journey to Mars

image

We’re developing the capabilities needed to send humans to an asteroid by 2025 and Mars in the 2030s. Mars is a rich destination for scientific discovery and robotic and human exploration as we expand our presence into the solar system. Its formation and evolution are comparable to Earth, helping us learn more about our own planet’s history and future.

International Space Station

image

Earth Right Now

image

We use the vantage point of space to increase our understanding of our home planet, improve lives and safeguard our future. Our Earth science work also makes a difference in people’s lives around the world every day.

Technology Drives Exploration

image

Sustained investments in our technology advance space exploration, science and aeronautics capabilities. We seek to improve our ability to access and travel through space; land more mass in more locations throughout our solar system; live and work in deep space and on planetary bodies; build next generation air vehicles, and transform the ability to observe the universe and answer profound questions in Earth and space sciences.

Aeronautics

image

Thanks to advancements in aeronautics developed by NASA, today’s aviation industry is better equipped than ever to safely and efficiently transport all those passengers to their destinations. 

image

The President’s FY 2017 budget provides $790 million to our Aeronautics Research Mission Directorate. This investment will accelerate aviation energy efficiency, advance propulsion system transformation and enable major improvements in aviation safety and mobility. The future of flight will: utilize greener energy, be half as loud, use half the fuel and will create quieter sonic booms.

State of NASA Social

image

Today, we have opened our doors and invited social media followers and news media to an in-person event, at one of our 10 field centers. Guests will go on a tour and see highlights of the work we’re doing. You can follow along digitally on Twitter: https://twitter.com/NASASocial/lists/state-of-nasa-all1. 

Check our Twitter Moment HERE.

Did you miss NASA Administrator Bolden’s remarks? You can watch a full recap HERE. 

For all budget related items, visit: http://www.nasa.gov/news/budget/index.html

Make sure to follow us on Tumblr for your regular dose of space: http://nasa.tumblr.com


Tags
7 years ago

Is there any other way to actually look at the eclipse (besides television/streams) without using the special eclipse glasses?

Is There Any Other Way To Actually Look At The Eclipse (besides Television/streams) Without Using The

Unfortunately, you can not directly look at the eclipse without the proper eye protection https://eclipse2017.nasa.gov/safety. But there are lots of fun indirect methods that you can use. The GIF shows how you can make a pin hole projector with your hands. We also have patterns for 3D printers to make your own pin hole projector in the shape of the US or your state https://eclipse2017.nasa.gov/2d3d-printable-pinhole-projectors


Tags
5 years ago

in a male dominated profession, what were some obstacles you faced as the first Hispanic female flight director and how did you overcome them? what would be your advice to young women interested in the space program?


Tags
9 years ago

Top 10 Ways the Space Station is Helping Get Us to Mars

Believe it or not, the International Space Station is paving our way to Mars. Being the only microgravity laboratory in which long-duration investigations can take place, it provides deeper understanding of how the human body reacts to long-term spaceflight. Here are the top 10 ways the space station is helping us on our journey to the Red Planet:

10: Communication Delays

image

Have you ever sent a text and got frustrated when it took longer than 3 seconds to send? Imaging communicating from Mars where round-trip delays could take up to 31 minutes! Our Comm Delay Assessment studies the effects of delayed communications for interplanetary crews that have to handle medical and other emergencies in deep space.

9. Astronaut Functional Performance

image

After a long nights sleep, do you ever feel a bit clumsy when you first get out of bed? Imagine how crew members might feel after spending six months to a year in microgravity! Our Field Test investigation is working to understand the extend of physical changes in astronauts who live in space for long periods of time, with an aim toward improving recovery time and developing injury prevention methods for future missions.

8. Psychological Impacts of Isolation and Confinement

image

In order to study the behavioral issues associated with isolation and confinement, researchers evaluate the personal journals of space station crew members. These study results provide information to help prepare us for longer duration spaceflight.

7. Impacts on Vision

image

Did you know that long duration spaceflight can often cause changes to crew members’ vision? It can, and our Ocular Health study monitors microgravity-induced visual impairment, as well as changes believed to arise from elevated intracranial pressure. All of this work hopes to characterize how living in microgravity can affect the visual, vascular and central nervous systems.

6. Immune Responses

image

An important aspect of our journey to Mars is the need to understand how long-duration spaceflight affects they way crew members’ bodies defend agains pathogens. Our Integrated Immune investigation collects and analyzes blood, urine and saliva samples from crew members before, during and after spaceflight to monitor changes in the immune system.

5. Food for Long-Duration Crews

image

Just like a hiker preparing for a long trek, packing the foods that will give you the most energy for the longest amount of time is key to your success. This is also true for astronauts on long-duration missions. Our Energy investigation measures a crew members’ energy requirements, which is a crucial factor needed for sending the correct amount of the right types of food to space.

4. Exercise for Long-Term Missions

image

Rigorous exercise is already a regular part of astronauts’ routines, and continuing that focus will be critical to keeping crew members’ bodies strong and ready for a mission to Mars and a healthy return to Earth. Our Sprint investigation is studying the best combination of intensity and duration for exercise in space.

3. Determine Best Habitat/Environment for Crews

image

Have you ever complained about your room being too small? Imagine living in cramped quarters with an entire crew for months on a Mars mission! Our Habitability investigation collects observations that will help spacecraft designers understand how much habitable volume is required, and whether a mission’s duration impacts how much space crew members need.

2. Growing Food in Space

image

There’s nothing like fresh food. Not only does it provide valuable nutrition for astronauts, but can also offer psychological benefits from tending and harvesting the crops. Our Veggie investigation studies how to best utilize a facility aboard the space station for growing fresh produce in microgravity.

1. Manufacturing Items in Space

image

When crews head to Mars, there may be items that are unanticipated or that break during the mission. Our 3-D Printing in Zero-G Technology Demonstration would give crews the ability to manufacture new objects on demand while in space.

Make sure to follow us on Tumblr for your regular dose of space:http://nasa.tumblr.com


Tags
4 years ago

What, in your opinion, is Perseverance's most groundbreaking experiment/ instrument?


Tags
1 year ago
In this multiwavelength image, the central object resembles a semi-transparent, spinning toy top in shades of purple and magenta against a black background. The top-like structure appears to be slightly falling toward the right side of the image. At its center is a bright spot. This is the pulsar that powers the nebula. A stream of material is spewing forth from the pulsar in a downward direction, constituting what would be the part of a top that touches a surface while it is spinning. Wispy purple light accents regions surrounding the object. This image combines data from NASA's Chandra, Hubble, and Spitzer telescopes. Credit: X-ray: NASA/CXC/SAO; Optical: NASA/STScI; Infrared: NASA-JPL-Caltech

Navigating Deep Space by Starlight

On August 6, 1967, astrophysicist Jocelyn Bell Burnell noticed a blip in her radio telescope data. And then another. Eventually, Bell Burnell figured out that these blips, or pulses, were not from people or machines.

This photograph shows astrophysicist Jocelyn Bell Burnell smiling into a camera. She is wearing glasses, a pink collared shirt, and a black cardigan. She is holding a yellow pencil above a piece of paper with a red line across it. There is a tan lampshade and several books in the background. The image is watermarked “Copyright: Robin Scagell/Galaxy Picture Library.”

The blips were constant. There was something in space that was pulsing in a regular pattern, and Bell Burnell figured out that it was a pulsar: a rapidly spinning neutron star emitting beams of light. Neutron stars are superdense objects created when a massive star dies. Not only are they dense, but neutron stars can also spin really fast! Every star we observe spins, and due to a property called angular momentum, as a collapsing star gets smaller and denser, it spins faster. It’s like how ice skaters spin faster as they bring their arms closer to their bodies and make the space that they take up smaller.

This animation depicts a distant pulsar blinking amidst a dark sky speckled with colorful stars and other objects. The pulsar is at the center of the image, glowing purple, varying in brightness and intensity in a pulsating pattern. As the camera pulls back, we see more surrounding objects, but the pulsar continues to blink. The image is watermarked “Artist’s concept.” Credit: NASA’s Goddard Space Flight Center

The pulses of light coming from these whirling stars are like the beacons spinning at the tops of lighthouses that help sailors safely approach the shore. As the pulsar spins, beams of radio waves (and other types of light) are swept out into the universe with each turn. The light appears and disappears from our view each time the star rotates.

A small neutron star spins at the center of this animation. Two purple beams of light sweep around the star-filled sky, emanating from two spots on the surface of the neutron star, and one beam crosses the viewer’s line of sight with a bright flash. The image is watermarked “Artist’s concept.” Credit: NASA's Goddard Space Flight Center.

After decades of studying pulsars, astronomers wondered—could they serve as cosmic beacons to help future space explorers navigate the universe? To see if it could work, scientists needed to do some testing!

First, it was important to gather more data. NASA’s NICER, or Neutron star Interior Composition Explorer, is a telescope that was installed aboard the International Space Station in 2017. Its goal is to find out things about neutron stars like their sizes and densities, using an array of 56 special X-ray concentrators and sensitive detectors to capture and measure pulsars’ light.

This time-lapse of our Neutron star Interior Composition Explorer (NICER) shows how it scans the skies to study pulsars and other X-ray sources from its perch aboard the International Space Station. NICER is near the center of the image, a white box mounted on a platform with a shiny panel on one side and dozens of cylindrical mirrors on the opposite side. Around it are other silver and white instruments and scaffolding. NICER swivels and pans to track objects, and some other objects nearby move as well. The station’s giant solar panels twist and turn in the background. Movement in the sequence, which represents a little more than one 90-minute orbit, is sped up by 100 times. Credit: NASA.

But how can we use these X-ray pulses as navigational tools? Enter SEXTANT, or Station Explorer for X-ray Timing and Navigation Technology. If NICER was your phone, SEXTANT would be like an app on it.  

During the first few years of NICER’s observations, SEXTANT created an on-board navigation system using NICER’s pulsar data. It worked by measuring the consistent timing between each pulsar’s pulses to map a set of cosmic beacons.

This photo shows the NICER payload on the International Space Station. Against a black background, tall rectangular solar panels that appear as a golden mesh rise from the bottom of the photo, passing through its middle area. In front of that are a variety of gray and white shapes that make up instruments and the structure of the space station near NICER. Standing above from them, attached to a silver pole, is the rectangular box of the NICER telescope, which is pointing its concentrators up and to the right. Credit: NASA.

When calculating position or location, extremely accurate timekeeping is essential. We usually rely on atomic clocks, which use the predictable fluctuations of atoms to tick away the seconds. These atomic clocks can be located on the ground or in space, like the ones on GPS satellites. However, our GPS system only works on or close to Earth, and onboard atomic clocks can be expensive and heavy. Using pulsar observations instead could give us free and reliable “clocks” for navigation. During its experiment, SEXTANT was able to successfully determine the space station’s orbital position!

A photo of the International Space Station as seen from above. The left and right sides of the image are framed by the station's long, rectangular solar panels, with a complex array of modules and hardware in the middle. The background is taken up fully by the surface of the Earth; lakes, snow-capped mountains, and a large body of water are faintly visible beneath white clouds. Credit: NASA

We can calculate distances using the time taken for a signal to travel between two objects to determine a spacecraft’s approximate location relative to those objects. However, we would need to observe more pulsars to pinpoint a more exact location of a spacecraft. As SEXTANT gathered signals from multiple pulsars, it could more accurately derive its position in space.

This animation shows how triangulating the distances to multiple pulsars could help future space explorers determine their location. In the first sequence, the location of a spaceship is shown in a blue circle in the center of the image against a dark space background. Three pulsars, shown as spinning beams of light, appear around the location. They are circled in green and then connected with dotted lines. Text on screen reads “NICER data are also used in SEXTANT, an on-board demonstration of pulsar-based navigation.” The view switches to the inside of a futuristic spacecraft, looking through the windshield at the pulsars. An illuminated control panel glows in blues and purples. On-screen text reads “This GPS-like technology may revolutionize deep space navigation through the solar system and beyond.” Credit: NASA’s Johnson Space Center

So, imagine you are an astronaut on a lengthy journey to the outer solar system. You could use the technology developed by SEXTANT to help plot your course. Since pulsars are reliable and consistent in their spins, you wouldn’t need Wi-Fi or cell service to figure out where you were in relation to your destination. The pulsar-based navigation data could even help you figure out your ETA!

NASA’s Space Launch System (SLS) rocket carrying the Orion spacecraft launched on the Artemis I flight test. With Artemis I, NASA sets the stage for human exploration into deep space, where astronauts will build and begin testing the systems near the Moon needed for lunar surface missions and exploration to other destinations farther from Earth. This image shows a SLS rocket against a dark, evening sky and clouds of smoke coming out from the launch pad. This is all reflected on the water in the foreground of the photo. Credit: NASA/Bill Ingalls

None of these missions or experiments would be possible without Jocelyn Bell Burnell’s keen eye for an odd spot in her radio data decades ago, which set the stage for the idea to use spinning neutron stars as a celestial GPS. Her contribution to the field of astrophysics laid the groundwork for research benefitting the people of the future, who yearn to sail amongst the stars.  

Keep up with the latest NICER news by following NASA Universe on X and Facebook and check out the mission’s website. For more on space navigation, follow @NASASCaN on X or visit NASA’s Space Communications and Navigation website.  

Make sure to follow us on Tumblr for your regular dose of space!


Tags
6 years ago

Discover NASA Technology in Your Life

Have you ever wondered how space exploration impacts you? “Spinoffs” are products and services developed from NASA technology or improved through NASA partnerships. These innovations—first created to help explore space and study Earth—are responsible for billions of dollars in both revenue and saved costs, tens of thousands of jobs created, and for changing the world around us.

Our NASA Home & City interactive web platform allows you to explore some of the spinoff technologies you can find in your everyday life, demonstrating the wider benefits of America’s investments in its space program.

image

Here are the seven most unexpected items you can find in your homes and cities which were “spun off” from technologies to enable the study and exploration of space.

1. Wireless Headsets

“That’s one small step for man, one giant leap for mankind.” On July 20, 1969, millions were glued to their television sets when NASA astronaut Neil Armstrong offered these famous words via live broadcast, upon becoming the first man to ever step foot on the Moon. This historic transmission was delivered from Armstrong’s headset to the headsets of Mission Control personnel at NASA, and then on to the world.

Improved by the technology that carried Neil Armstrong’s words, more compact and comfortable headsets were developed for airline pilots in the 1960s and '70s. Today those advancements continue to evolve in all forms of communications and telephone equipment. Mobile headsets provide greater efficiency and flexibility for everyone from professionals to video gamers.

image

2. Water Quality Monitoring

On the International Space Station very little goes to waste. This includes water, which is recovered from every possible source, cleaned and recycled.

Following our development of a simplified bacteria test for water quality on the space station, one engineer created a foundation to distribute test kits suitable for use in rural communities around the world. Water contamination is still a major problem in many places, and the test helps local communities and governments obtain and share water quality data using a smartphone app.

3. Skin Cream

We know that on Earth, gravity is a constant. For astronauts in orbit, however, it’s a different story—and according to a scientist at NASA's Johnson Space Center, studying what happens to bodies in microgravity “can lead to significant new discoveries in human biology for the benefit of humankind.”

As our researchers experimented with replicating microgravity conditions in the lab, they invented a bioreactor that could help simulate conditions that human cells experience in a space-like environment. This allowed them to perform tissue-growth experiments on the ground and in space, and eventually, to consider the question of how to protect human cells from the toxic effects of long-duration space missions.

Now, thanks to this NASA-patented bioreactor, one company uses agents from human cells that produce collagen to enrich its skin cream products. Lab tests have shown the rejuvenating cream to increase skin moisture content by 76 percent and reduce darkness and wrinkles by more than 50 percent.

image

4. Acoustic Guitars

From its start, NASA has innovated in all branches of aeronautics, which has led to numerous advances in helicopters, including ways to limit vibrations as they fly and advanced composites to build tougher, safer vehicles. 

An industrious helicopter manufacturer that built up its expertise with NASA contracts later used the same special vibration analysis equipment to enhance the sound of acoustic guitars. The company also built the body out of a fiberglass composite used for rotor blades. The resulting instruments are stronger and less expensive to produce than those of traditional rosewood and produce a rich, full sound.

image

5. Tiny [Mobile] Homes

While the International Space Station is the largest spacecraft ever flown—it's about the size of a football field—living and working space for astronauts is still at a premium. NASA created a studio called the Habitability Design Center to experiment with the interior design of spacecraft to maximize usable space and make scientific research as efficient and effective as possible.

An architect who helped NASA design the interior of the International Space Station launched a company specializing in compact trailers for camping and exploration. Suitable for a full hookup campsite or going completely off-grid, the company's flagship trailer can accommodate two adults and two children for sleeping and can be customized with a range of features including a shower, refrigerator, toilet, and more. And it all fits into a unit light enough to be towed by a four-cylinder car.

image

6. Blue Light Blocking Ski Goggles

Skiers and snowboarders face extremely bright sunlight, especially when it's reflected off the white snow. That can make it hard to see, and not just because of glare. The blue in sunlight makes it more difficult to discern colors at the edge of the visible light spectrum, like reds. A NASA-designed filter used in snow goggles helps block up to 95 percent of blue light, making it easier for people on the slopes to see the terrain clearly.

image

7. Implants for the Hearing Impaired

Hearing aids, which make sound louder, can only do so much for those who were born or have become deaf. Cochlear implants work in a completely different way, converting sound into digital signals that can be processed by the brain.  And the technology traces back in part to a NASA space shuttle engineer who used skills in electronics instrumentation and his own experiences with hearing loss to develop an early version of the life-changing device.

image

These are just a few examples of thousands of NASA Spinoff and dual-purpose technologies benefiting the world around us. 

Trace space back to you and visit NASA Home and City today!

Make sure to follow us on Tumblr for your regular dose of space: http://nasa.tumblr.com.  


Tags
9 years ago
Answer Time From Space!

Answer Time from Space!

I’m on day 321 of my #YearInSpace, and today I surpassed 500 days in space total. Let’s chat! Sat., Feb. 13 at 1:45 p.m. ET. 

6 years ago

Exploring an Asteroid Without Leaving Earth

This 45 day mission – which began May 5, 2018 and ends today, June 18 – will help our researchers learn how isolation and close quarters affect individual and group behavior. This study at our Johnson Space Center prepares us for long duration space missions, like a trip to an asteroid or even to Mars.

Exploring An Asteroid Without Leaving Earth

The Human Research Exploration Analog (HERA) that the crew members will be living in is one compact, science-making house. But unlike in a normal house, these inhabitants won’t go outside for 45 days. Their communication with the rest of planet Earth will also be very limited, and they won’t have any access to internet. So no checking social media, kids!

The only people they will talk with regularly are mission control and each other.

Exploring An Asteroid Without Leaving Earth

The HERA XVII crew is made up of 2 men and 2 women, selected from the Johnson Space Center Test Subject Screening (TSS) pool. The crew member selection process is based on a number of criteria, including criteria similar to what is used for astronaut selection. The four would-be astronauts are:

William Daniels

Chiemi Heil

Eleanor Morgan

Michael Pecaut

Exploring An Asteroid Without Leaving Earth

What will they be doing?

The crew are going on a simulated journey to an asteroid, a 715-day journey that we compress into 45 days. They will fly their simulated exploration vehicle around the asteroid once they arrive, conducting several site surveys before 2 of the crew members will participate in a series of virtual reality spacewalks.

Exploring An Asteroid Without Leaving Earth

They will also be participating in a suite of research investigations and will also engage in a wide range of operational and science activities, such as growing and analyzing plants and brine shrimp, maintaining and “operating” an important life support system, exercising on a stationary bicycle or using free weights, and sharpening their skills with a robotic arm simulation.

Exploring An Asteroid Without Leaving Earth

During the whole mission, they will consume food produced by the Johnson Space Center Food Lab – the same food that the astronauts enjoy on the International Space Station – which means that it needs to be rehydrated or warmed in a warming oven.

This simulation means that even when communicating with mission control, there will be a delay on all communications ranging from 1 to 5 minutes each way.

A few other details:

The crew follows a timeline that is similar to one used for the space station crew.

They work 16 hours a day, Monday through Friday. This includes time for daily planning, conferences, meals and exercise.

Mission: May 5 - June 18, 2018

Exploring An Asteroid Without Leaving Earth

But beware! While we do all we can to avoid crises during missions, crews need to be able to respond in the event of an emergency. The HERA crew will conduct a couple of emergency scenario simulations, including one that will require them to respond to a decrease in cabin pressure, potentially finding and repairing a leak in their spacecraft.

Throughout the mission, researchers will gather information about living in confinement, teamwork, team cohesion, mood, performance and overall well-being. The crew members will be tracked by numerous devices that each capture different types of data.

Learn more about the HERA mission HERE.

Explore the HERA habitat via 360-degree videos HERE.

Make sure to follow us on Tumblr for your regular dose of space: http://nasa.tumblr.com


Tags
Loading...
End of content
No more pages to load
  • encodecode
    encodecode liked this · 3 years ago
  • xanxana1
    xanxana1 liked this · 7 years ago
  • konekomia
    konekomia reblogged this · 8 years ago
  • learn-everything
    learn-everything reblogged this · 8 years ago
  • wells-hg
    wells-hg reblogged this · 9 years ago
  • almondandpistachio95
    almondandpistachio95 reblogged this · 9 years ago
  • korekhthonia
    korekhthonia liked this · 9 years ago
  • darkwavegirl
    darkwavegirl liked this · 9 years ago
  • milkywayan
    milkywayan reblogged this · 9 years ago
  • the-outer-planets-blog
    the-outer-planets-blog reblogged this · 9 years ago
  • notnoor
    notnoor liked this · 9 years ago
  • jsbustaman
    jsbustaman liked this · 9 years ago
  • stiuvar-elnor
    stiuvar-elnor reblogged this · 9 years ago
  • silvanheirofslytherin
    silvanheirofslytherin reblogged this · 9 years ago
  • rubinaambrosina
    rubinaambrosina liked this · 9 years ago
  • starlightoffandoms
    starlightoffandoms reblogged this · 9 years ago
  • silenticyriver
    silenticyriver reblogged this · 9 years ago
  • asherlockedwhovian
    asherlockedwhovian reblogged this · 9 years ago
  • the-outer-planets-blog
    the-outer-planets-blog liked this · 9 years ago
  • zealousstarlightsoul-blog
    zealousstarlightsoul-blog liked this · 9 years ago
  • azyaxxi-blog
    azyaxxi-blog reblogged this · 9 years ago
  • kwentrith
    kwentrith liked this · 9 years ago
  • quickmanz-blog
    quickmanz-blog liked this · 9 years ago
  • phipiohsum475
    phipiohsum475 reblogged this · 9 years ago
  • faern-me-blog
    faern-me-blog reblogged this · 9 years ago
  • avimolls
    avimolls liked this · 9 years ago
  • agentreptile
    agentreptile liked this · 9 years ago
  • coolsandwich
    coolsandwich liked this · 9 years ago
  • faethorne
    faethorne reblogged this · 9 years ago
  • cowboykoschei
    cowboykoschei reblogged this · 9 years ago
  • hamiltonneto-blog1
    hamiltonneto-blog1 liked this · 9 years ago
  • jimparsonftw
    jimparsonftw reblogged this · 9 years ago
  • jimparsonftw
    jimparsonftw liked this · 9 years ago
  • depthsofmysol
    depthsofmysol reblogged this · 9 years ago
  • eatingmycake2
    eatingmycake2 reblogged this · 9 years ago
nasa - NASA
NASA

Explore the universe and discover our home planet with the official NASA Tumblr account

1K posts

Explore Tumblr Blog
Search Through Tumblr Tags