Seriously, genetics is weird.
I was reading one paper on long noncoding RNAs and there's this one part that just really stood out to me.
So to catch everyone up, genetic data is stored as DNA. Then parts of it go through a process called transcription to build a strand of RNA. Certain RNAs get translated into proteins, but there are noncoding RNAs that don't make proteins but instead do a secret second thing (and I mean secret cause there are tons of ncRNAs that no one knows what they do). long noncoding RNAs are just noticeably longer than average.
Anyway, one lncRNA mentioned in the paper is called WINCR1. When the researchers managed to block it from being used, they noted that cells lost the ability to divide and there was one particular gene GADD45B, which is responsible for triggering apoptosis, was more common in the cells.
So my guess is one of WINCR1's jobs is to just confirm to the self-destruct system that the DNA isn't broken. Like, it being transcribed essentially tells the cell that that part of the DNA is still working and it can then go and turn off the kill switch.
So I guess cells are just designed to kill themselves as their default setting and WINCR1 is the drinking bird pressing the Y key to tell the system to not just blow up.
Unidentified protist. Quite the hyper one.
Abortiporus biennis, 2019-08-26
Call me mRNA because AUG AGA GGG UUU UUC AUG GUG GGA UGA
It's not the best "microbiology" art, but it has a very interesting background. Two bacteria from two different clinical cases were inoculated on the TSCB medium. This metallic blue spilling bacterium is of course Pseudomonas aeruginosa. The yellow one (positive reaction on TSCB medium) is Vibrio metschnikovii isolated from chronic UTI in a dog. It was an unusual microbiological diagnosis. But what can you do when even your dog has a better holiday than you? Problems with urination (in this dog) began just after returning from the Mediterranean, the owners and the dog intensively used the charms of warm and salty water.
At the centre of Rosalind Franklin’s tombstone in London’s Willesden Jewish Cemetery is the word “scientist”. This is followed by the inscription, “Her research and discoveries on viruses remain of lasting benefit to mankind.” As one of the twentieth century’s pre-eminent scientists, Franklin’s work has benefited all of humanity. The one-hundredth anniversary of her birth this month is prompting much reflection on her career and research contributions, not least Franklin’s catalytic role in unravelling the structure of DNA.
. . .
But Franklin’s remarkable work on DNA amounts to a fraction of her record and legacy. She was a tireless investigator of nature’s secrets, and worked across biology, chemistry and physics, with a focus on research that mattered to society. She made important advances in the science of coal and carbon, and she became an expert in the study of viruses that cause plant and human diseases. In essence, it is because of Franklin, her collaborators and successors, that today’s researchers are able to use tools such as DNA sequencing and X-ray crystallography to investigate viruses such as SARS-CoV-2.
. . .
Franklin was an inveterate traveller on the global conference circuit and a collaborator with international partners. She won a rare grant (with Klug) from the US National Institutes of Health. She was a global connector in the booming early days of research into virus structures: an expert in pathogenic viruses who had gained an international reputation and cared deeply about putting her research to use. It is a travesty that Franklin is mostly remembered for not receiving full credit for her contributions to the discovery of DNA’s structure. That part of Franklin’s life story must never be forgotten, but she was so much more than the “wronged heroine”, and it’s time to recognize her for the full breadth and depth of her research career.