Must Watch: ATB Future Memories (YouTube) Https://youtu.be/QpLrjifXT1w Https://www.instagram.com/p/BsPJ-vfH-Jr/?utm_source=ig_tumblr_share&igshid=zd40u6v4m410

Must Watch: ATB Future Memories (YouTube) Https://youtu.be/QpLrjifXT1w Https://www.instagram.com/p/BsPJ-vfH-Jr/?utm_source=ig_tumblr_share&igshid=zd40u6v4m410

Must watch: ATB Future Memories (YouTube) https://youtu.be/QpLrjifXT1w https://www.instagram.com/p/BsPJ-vfH-Jr/?utm_source=ig_tumblr_share&igshid=zd40u6v4m410

More Posts from Matthewjopdyke and Others

7 years ago

What are the Universe’s Most Powerful Particle Accelerators?

Every second, every square meter of Earth’s atmosphere is pelted by thousands of high-energy particles traveling at nearly the speed of light. These zippy little assailants are called cosmic rays, and they’ve been puzzling scientists since they were first discovered in the early 1900s. One of the Fermi Gamma-ray Space Telescope’s top priority missions has been to figure out where they come from.

image

“Cosmic ray” is a bit of a misnomer. Makes you think they’re light, right? But they aren’t light at all! They’re particles that mostly come from outside our solar system — which means they’re some of the only interstellar matter we can study — although the Sun also produces some. Cosmic rays hit our atmosphere and break down into secondary cosmic rays, most of which disperse quickly in the atmosphere, although a few do make it to Earth’s surface.

Cosmic rays aren’t dangerous to those of us who spend our lives within Earth’s atmosphere. But if you spend a lot of time in orbit or are thinking about traveling to Mars, you need to plan how to protect yourself from the radiation caused by cosmic rays.

image

Cosmic rays are subatomic particles — smaller particles that make up atoms. Most of them (99%) are nuclei of atoms like hydrogen and helium stripped of their electrons. The other 1% are lone electrons. When cosmic rays run into molecules in our atmosphere, they produce secondary cosmic rays, which include even lighter subatomic particles.

image

Most cosmic rays reach the same amount of energy a small particle accelerator could produce. But some zoom through the cosmos at energies 40 million times higher than particles created by the world’s most powerful man-made accelerator, the Large Hadron Collider. (Lightning is also a pretty good particle accelerator).

image

So where do cosmic rays come from? We should just be able to track them back to their source, right? Not exactly. Any time they run into a strong magnetic field on their way to Earth, they get deflected and bounce around like a game of cosmic pinball. So there’s no straight line to follow back to the source. Most of the cosmic rays from a single source don’t even make it to Earth for us to measure. They shoot off in a different direction while they’re pin balling.

image

Photo courtesy of Argonne National Laboratory

In 1949 Enrico Fermi — an Italian-American physicist, pioneer of high-energy physics and Fermi satellite namesake — suggested that cosmic rays might accelerate to their incredible speeds by ricocheting around inside the magnetic fields of interstellar gas clouds. And in 2013, the Fermi satellite showed that the expanding clouds of dust and gas produced by supernovas are a source of cosmic rays.

image

When a star explodes in a supernova, it produces a shock wave and rapidly expanding debris. Particles trapped by the supernova remnant magnetic field bounce around wildly.

image

Every now and then, they cross the shock wave and their energy ratchets up another notch. Eventually they become energetic enough to break free of the magnetic field and zip across space at nearly the speed of light — some of the fastest-traveling matter in the universe.

image

How can we track them back to supernovas when they don’t travel in a straight line, you ask? Very good question! We use something that does travel in a straight line — gamma rays (actual rays of light this time, on the more energetic end of the electromagnetic spectrum).

When the particles get across the shock wave, they interact with non-cosmic-ray particles in clouds of interstellar gas. Cosmic ray electrons produce gamma rays when they pass close to an atomic nucleus. Cosmic ray protons, on the other hand, produce gamma rays when they run into normal protons and produce another particle called a pion (Just hold on! We’re almost there!) which breaks down into two gamma rays.

image

The proton- and electron-produced gamma rays are slightly different. Fermi data taken over four years showed that most of the gamma rays coming from some supernova remnants have the energy signatures of cosmic ray protons knocking into normal protons. That means supernova remnants really are powerful particle accelerators, creating a lot of the cosmic rays that we see!

There are still other cosmic ray sources on the table — like active galactic nuclei — and Fermi continues to look for them. Learn more about what Fermi’s discovered over the last 10 years and how we’re celebrating its accomplishments.

Make sure to follow us on Tumblr for your regular dose of space: http://nasa.tumblr.com. 

6 years ago

I am pleased to announce a NEW RELEASE to my Space Opera series. It is now available on Amazon in ebook and paperback formats! Pathway to the Stars: Part 4, Universal Party Autographed copies of printed material are available for direct purchase on the author website at https://www.ftb-pathway-publications.com Thank you, Kim, for putting this together! #spaceopera #futurism #scifiauthor #sciencefiction #scififantasy #biotech #nanotech #neurotech #spacetravel #solarsystem #politicalscifi #strongfemalelead #entertain #educate https://www.instagram.com/p/Bur_fTyA4xP/?utm_source=ig_tumblr_share&igshid=15y5ce5xhxpf5


Tags
7 years ago

10 Things: Journey to the Center of Mars

May the fifth be with you because history is about to be made: As early as May 5, 2018, we’re set to launch Mars InSight, the very first mission to study the deep interior of Mars. We’ve been roaming the surface of Mars for a while now, but when InSight lands on Nov. 26, 2018, we’re going in for a deeper look. Below, 10 things to know as we head to the heart of Mars.

image

Coverage of prelaunch and launch activities begins Thursday, May 3, on NASA Television and our homepage.

1. What’s in a name? 

image

“Insight” is to see the inner nature of something, and the InSight lander—a.k.a. Interior Exploration using Seismic Investigations, Geodesy and Heat Transport—will do just that. InSight will take the “vital signs” of Mars: its pulse (seismology), temperature (heat flow) and reflexes (radio science). It will be the first thorough check-up since the planet formed 4.5 billion years ago.

2. Marsquakes. 

You read that right: earthquakes, except on Mars. Scientists have seen a lot of evidence suggesting Mars has quakes, and InSight will try to detect marsquakes for the first time. By studying how seismic waves pass through the different layers of the planet (the crust, mantle and core), scientists can deduce the depths of these layers and what they’re made of. In this way, seismology is like taking an X-ray of the interior of Mars.

Want to know more? Check out this one-minute video.

3. More than Mars. 

image

InSight is a Mars mission, but it’s also so much more than that. By studying the deep interior of Mars, we hope to learn how other rocky planets form. Earth and Mars were molded from the same primordial stuff more than 4.5 billion years ago, but then became quite different. Why didn’t they share the same fate? When it comes to rocky planets, we’ve only studied one in great detail: Earth. By comparing Earth’s interior to that of Mars, InSight’s team hopes to better understand our solar system. What they learn might even aid the search for Earth-like planets outside our solar system, narrowing down which ones might be able to support life.

4. Robot testing. 

InSight looks a bit like an oversized crane game: When it lands on Mars this November, its robotic arm will be used to grasp and move objects on another planet for the first time. And like any crane game, practice makes it easier to capture the prize.

Want to see what a Mars robot test lab is like? Take a 360 tour.

5. The gang’s all here. 

image

InSight will be traveling with a number of instruments, from cameras and antennas to the heat flow probe. Get up close and personal with each one in our instrument profiles.

6. Trifecta. 

image

InSight has three major parts that make up the spacecraft: Cruise Stage; Entry, Descent, and Landing System; and the Lander. Find out what each one does here.

7. Solar wings. 

Mars has weak sunlight because of its long distance from the Sun and a dusty, thin atmosphere. So InSight’s fan-like solar panels were specially designed to power InSight in this environment for at least one Martian year, or two Earth years.

8. Clues in the crust. 

image

Our scientists have found evidence that Mars’ crust is not as dense as previously thought, a clue that could help researchers better understand the Red Planet’s interior structure and evolution. “The crust is the end-result of everything that happened during a planet’s history, so a lower density could have important implications about Mars’ formation and evolution,” said Sander Goossens of our Goddard Space Flight Center in Greenbelt, Maryland.

9. Passengers. 

image

InSight won’t be flying solo—it will have two microchips on board inscribed with more than 2.4 million names submitted by the public. “It’s a fun way for the public to feel personally invested in the mission,” said Bruce Banerdt of our Jet Propulsion Laboratory, the mission’s principal investigator. “We’re happy to have them along for the ride.”

10. Tiny CubeSats, huge firsts. 

image

The rocket that will loft InSight beyond Earth will also launch a separate NASA technology experiment: two mini-spacecraft called Mars Cube One, or MarCO. These suitcase-sized CubeSats will fly on their own path to Mars behindInSight. Their goal is to test new miniaturized deep space communication equipment and, if the MarCOs make it to Mars, may relay back InSight data as it enters the Martian atmosphere and lands. This will be a first test of miniaturized CubeSat technology at another planet, which researchers hope can offer new capabilities to future missions.

Check out the full version of ‘Solar System: 10 Thing to Know This Week’ HERE. 

Make sure to follow us on Tumblr for your regular dose of space: http://nasa.tumblr.com. 

7 years ago

The Universe's Brightest Lights Have Some Dark Origins

Did you know some of the brightest sources of light in the sky come from black holes in the centers of galaxies? It sounds a little contradictory, but it’s true! They may not look bright to our eyes, but satellites have spotted oodles of them across the universe. 

One of those satellites is our Fermi Gamma-ray Space Telescope. Fermi has found thousands of these kinds of galaxies in the 10 years it’s been operating, and there are many more out there!

image

Black holes are regions of space that have so much gravity that nothing - not light, not particles, nada - can escape. Most galaxies have supermassive black holes at their centers - these are black holes that are hundreds of thousands to billions of times the mass of our sun - but active galactic nuclei (also called “AGN” for short, or just “active galaxies”) are surrounded by gas and dust that’s constantly falling into the black hole. As the gas and dust fall, they start to spin and form a disk. Because of the friction and other forces at work, the spinning disk starts to heat up.

image

The disk’s heat gets emitted as light - but not just wavelengths of it that we can see with our eyes. We see light from AGN across the entire electromagnetic spectrum, from the more familiar radio and optical waves through to the more exotic X-rays and gamma rays, which we need special telescopes to spot.

image

About one in 10 AGN beam out jets of energetic particles, which are traveling almost as fast as light. Scientists are studying these jets to try to understand how black holes - which pull everything in with their huge amounts of gravity - somehow provide the energy needed to propel the particles in these jets.

The Universe's Brightest Lights Have Some Dark Origins

Many of the ways we tell one type of AGN from another depend on how they’re oriented from our point of view. With radio galaxies, for example, we see the jets from the side as they’re beaming vast amounts of energy into space. Then there’s blazars, which are a type of AGN that have a jet that is pointed almost directly at Earth, which makes the AGN particularly bright.  

image

Our Fermi Gamma-ray Space Telescope has been searching the sky for gamma ray sources for 10 years. More than half (57%) of the sources it has found have been blazars. Gamma rays are useful because they can tell us a lot about how particles accelerate and how they interact with their environment.

image

So why do we care about AGN? We know that some AGN formed early in the history of the universe. With their enormous power, they almost certainly affected how the universe changed over time. By discovering how AGN work, we can understand better how the universe came to be the way it is now.

image

Fermi’s helped us learn a lot about the gamma-ray universe over the last 10 years. Learn more about Fermi and how we’re celebrating its accomplishments all year.

Make sure to follow us on Tumblr for your regular dose of space: http://nasa.tumblr.com.

8 years ago

Wow, quite a career!

Ever Want To Ask A Real Life Astronaut A Question? Here’s Your Chance!

Ever want to ask a real life astronaut a question? Here’s your chance!

Astronaut Jeanette Epps will be taking your questions in an Answer Time session on Friday, May 5 from 10am - 11am ET here on NASA’s Tumblr. See the questions she’s answered by visiting nasa.tumblr.com/tagged/answertime!

NASA astronaut Jeanette J. Epps (Ph.D.) was selected as an astronaut in 2009. She has been assigned to her first spaceflight, which is scheduled to launch in May 2018. Her training included scientific and technical briefings, intensive instruction in International Space Station systems, spacewalk training, robotics, T‐38 flight training and wilderness survival training.

Before becoming an astronaut, Epps worked as a Technical Intelligence Officer at the Central Intelligence Agency (CIA).

Born in Syracuse, New York. Enjoys traveling, reading, running, mentoring, scuba diving and family.

She has a Bachelor of Science in Physics from LeMoyne College, as well as a Master of Science and Doctorate of Philosophy in Aerospace Engineering from the University of Maryland. 

Follow Jeanette on Twitter at @Astro_Jeanette and follow NASA on Tumblr for your regular dose of space.

5 years ago

Lauge - Ephemeral Flower (Cloud Garden Mix) [SpaceAmbient]


Tags
5 years ago

This Amazon/Author Hardcover Giveaway of A Cosmic Legacy: From Earth to the Stars is a compilation of all my publications contained within one text and part of a continuing story. Race to win, or simply buy it, and make this grand literary opus the favorite item in your library, next to your reading corner, on your nightstand, or in your living room, as you settle and read while the days go by.

Enjoy the story of several heroes who do as much as they can to heal the Earth, provide healing to those suffering most, and help humanity get out and into the Cosmos!

The Library of Congress Control Number (LCCN) is 2019911854, and the International Standard Book Number (ISBN) is 978-1-7333131-2-4, which is available on Amazon, Barnes & Noble and other stores online. Conduct a keyword search for the author, Matthew J Opdyke.

Hashtags #SpaceOpera #ScienceFiction #SciFi #Fantasy #Cerebral #Sophisticated #Books #eBooks #MatthewJOpdyke #mjopublications #physics #astronomy #biotech #neurotech #nanotech #spaceexploration #wellbeing #EarthFirst #physiology #neurology #longevity #CRISPR #sociopoliticalscifi #forEveryone

This Amazon/Author Hardcover Giveaway Of A Cosmic Legacy: From Earth To The Stars Is A Compilation Of
6 years ago

https://www.youtube.com/embed/YVfMMpkVs80?feature=oembed&enablejsapi=1&origin=https://safe.txmblr.com&wmode=opaque

I am pleased to announce a NEW RELEASE to my Space Opera series. It is now available on Amazon in ebook and paperback formats! 

Pathway to the Stars: Part 4, Universal Party

Autographed copies of printed material are available for direct purchase on the author website at:

https://www.ftb-pathway-publications.com 

Thank you, Kim, for putting this together!


Tags
6 years ago

Easter, Spring, and April Sale!

Please support the artist; comments on Amazon, Goodreads, and Barnes & Noble are also welcome and helpful. Thank you… 🐇🐰🐣🐤🐰🐇 – – Sale throughout April on: Pathway to the Stars: Part 1, Vesha Celeste (first in booklet series) http://www.amazon.com/dp/B07J2S8LLV – –and– – Further than Before: Pathway to the Stars: Part 1 (first in novel series) http://www.amazon.com/dp/B07HL767WZ – – Quotes from series, read by…

View On WordPress

5 years ago
Further Than Before: Pathway to the Stars, Part 1 - Audiobook Promo (Extended)
First of all, I want to thank my audience and let them know that it has been an honor working with my narrator, Graham Bessellieu. Despite being a newly publ...
matthewjopdyke - Matthew J. Opdyke
Matthew J. Opdyke

Author Matthew J. Opdyke, Science Fiction and Fantasy

147 posts

Explore Tumblr Blog
Search Through Tumblr Tags