Medical science is hard at it.
A research team in the Department of Electrical and Electronic Information Engineering and the Electronics-Inspired Interdisciplinary Research Institute (EIIRIS) at Toyohashi University of Technology developed 5-μm-diameter needle-electrodes on 1 mm × 1 mm block modules. This tiny needle may help solve the mysteries of the brain and facilitate the development of a brain-machine interface. The research results were reported in Scientific Reports on Oct 25, 2016.
(Image caption: Extracellular needle-electrode with a diameter of 5 μm mounted on a connector)
The neuron networks in the human brain are extremely complex. Microfabricated silicon needle-electrode devices were expected to be an innovation that would be able to record and analyze the electrical activities of the microscale neuronal circuits in the brain.
However, smaller needle technologies (e.g., needle diameter < 10 μm) are necessary to reduce damage to brain tissue. In addition to the needle geometry, the device substrate should be minimized not only to reduce the total amount of damage to tissue but also to enhance the accessibility of the electrode in the brain. Thus, these electrode technologies will realize new experimental neurophysiological concepts.
A research team in the Department of Electrical and Electronic Information Engineering and the EIIRIS at Toyohashi University of Technology developed 5- μm-diameter needle-electrodes on 1 mm × 1 mm block modules.
The individual microneedles are fabricated on the block modules, which are small enough to use in the narrow spaces present in brain tissue; as demonstrated in the recording using mouse cerebrum cortices. In addition, the block module remarkably improves the design variability in the packaging, offering numerous in vivo recording applications.
“We demonstrated the high design variability in the packaging of our electrode device, and in vivo neuronal recordings were performed by simply placing the device on a mouse’s brain. We were very surprised that high quality signals of a single unit were stably recorded over a long period using the 5-μm-diameter needle,” explained the first author, Assistant Professor Hirohito Sawahata, and co-author, researcher Shota Yamagiwa.
The leader of the research team, Associate Professor Takeshi Kawano said: “Our silicon needle technology offers low invasive neuronal recordings and provides novel methodologies for electrophysiology; therefore, it has the potential to enhance experimental neuroscience.” He added, “We expect the development of applications to solve the mysteries of the brain and the development of brain–machine interfaces.”
Bluetooth FM Transmitter Car Kit
New AI more human-like than ever before.
Computer scientists have taught an artificial intelligence agent how to do something that usually only humans can do – take a few quick glimpses around and infer its whole environment, a skill necessary for the development of effective search-and-rescue robots that one day can improve the effectiveness of dangerous missions.
“Phantom Energy” Protect your devices !!!https://leadingedgedeals.com/2019/01/04/__trashed-6/
Come Shop With Us !!
Nasa technologies are also useable on Earth.
Did you know technologies developed for space show up all over Earth? Our Technology Transfer Program has one major goal: bring our technology down to Earth. We patent space innovations developed for missions so that companies, startups and entrepreneurs can spin them off into new commercial products.
Our engineers and scientists create all sorts of materials and coatings—in fact, it is one of the most licensed technology categories in our patent portfolio. From materials that improve industrial and household products, to coatings and insulations that protect satellites, machinery and firefighters, our technologies offer smart solutions for modern challenges.
These are a few of our most in-demand technologies.
Made by innovators at our Langley Research Center, this tech was first created for exploring dusty, dirty surfaces like the Moon, Mars and asteroids. Lunar dust has been shown to cause big problems with mechanical equipment, like clogging filters and damaging seals. This technology can be used in the production of films, coatings and surface treatments to create dust-resistant and self-cleaning products for biomedical devices, aircraft, cars and much more. This tech could be a game-changer when battling dirt and grime.
Looking for a technology to ward off corrosion that’s also safe for the environment? Developed to protect our launch pads at Kennedy Space Center from extreme heat and exhaust from rockets, this “smart” coating can detect and prevent corrosion. It can even be painted on damaged surfaces to heal and protect them going forward. This tech has commercial potential in building safer bridges, automobiles and machinery. While it may seem like magic, this technology will reduce maintenance cost and improve safety.
Made to protect astronauts and vehicles during the dangerously hot task of reentry, scientists at Langley developed a flexible, lightweight and portable thermal protection system that can serve as a personal emergency fire shelter.
The flexible technology is made up of multilayer thermal blankets designed to handle external temperatures of up to 2,000°F – that’s as hot as magma found in some volcanos! The system can be formed as a sleeping bag, a tent, a blanket, a curtain, a flexible roll-up doorway or even for fire protection in housing structures.
This award-winning tech was initially developed by researchers at our Marshall Space Flight Center to help reduce vehicle exhaust emissions. This special alloy is flexible and strong—even at temperatures of over 500°F. That means it can withstand more wear and tear than other similar materials. Currently, this tech can be found improving motors on fishing boats as well as in all kinds of different engines.
Not all lubricants are liquids, for example, the non-stick coating on a frying pan. Truly in a class of its own, innovators at our Glenn Research Center have created solid lubricant materials to reduce friction and wear in mechanical parts, especially in extremely high heat. This tech could be useful in large engines, valves, turbines and power generation.
We needed a better material than iron or steel to prevent corrosion and rust in the International Space Station’s wastewater treatment system. Enter: our high-strength, super elastic compounds. Shock-proof, lightweight, durable and immune to rust, this durable tech has applications in ships, machines, industrial knives and cutters, and engine bearings here on Earth. They also don’t chemically degrade or break down lubricants, a common problem with existing bearing materials.
Interested in licensing the tech mentioned above? Follow the links to apply through our website, http://technology.nasa.gov.
You can also browse our entire materials and coatings portfolio at http://technology.nasa.gov/materials_and_coatings/.
Follow our NASA Technology Transfer Program on Twitter (@NASAsolutions) for the latest updates on technologies available for licensing.
Make sure to follow us on Tumblr for your regular dose of space: http://nasa.tumblr.com.
https://www.amazon.com/Apple-iPad-Wi-Fi-32GB-Latest/dp/B07BTS2KWK/ref=sm_n_se_dkp_US_pr_sea_0_0?adId=B07BTS2KWK&creativeASIN=B07BTS2KWK&linkId=b4b3ba0b672c08d837e16061d9e41713&tag=leadingedg05f-20&linkCode=w42&ref-refURL=https%3A%2F%2Fleadingedgedeals.com%2F&slotNum=0&imprToken=PAiJM0qxQ80SJiuthXuCvQ&adType=smart&adMode=search&adFormat=grid&impressionTimestamp=1565706801957
https://www.leadingedgedeals.com
Price:$249.00 & FREE Shipping Apple-iPad
Come Shop With Us !! News Information & Deals Online !!
https://www.leadingedgedeals.com
Precautionary measures for Safe use of Electronics.
Scientists created high-tech wood.
Scientists created high-tech wood by removing the lignin from natural wood using hydrogen peroxide. The remaining wood is very dense and has a tensile strength of around 404 megapascals, making it 8.7 times stronger than natural wood and comparable to metal structure materials including steel. http://bit.ly/2VNYt0J
Implants for mental illness, the latest AI Innovation.
#Robotics #whatsplaying #Technology #Arttificialintelligence. #AI
A new article introduces a new way of combining perception and motor commands using the so-called hyperdimensional computing theory, which could fundamentally alter and improve the basic artificial intelligence (AI) task of sensorimotor representation – how agents like robots translate what they sense into what they do.