The Cone Nebula from Hubble Image Credit: Hubble Legacy Archive, NASA, ESA - Processing & Licence: Judy Schmidt
Explanation: Stars are forming in the gigantic dust pillar called the Cone Nebula. Cones, pillars, and majestic flowing shapes abound in stellar nurseries where natal clouds of gas and dust are buffeted by energetic winds from newborn stars. The Cone Nebula, a well-known example, lies within the bright galactic star-forming region NGC 2264. The Cone was captured in unprecedented detail in this close-up composite of several observations from the Earth-orbiting Hubble Space Telescope. While the Cone Nebula, about 2,500 light-years away in Monoceros, is around 7 light-years long, the region pictured here surrounding the cone’s blunted head is a mere 2.5 light-years across. In our neck of the galaxy that distance is just over half way from our Sun to its nearest stellar neighbors in the Alpha Centauri star system. The massive star NGC 2264 IRS, seen by Hubble’s infrared camera in 1997, is the likely source of the wind sculpting the Cone Nebula and lies off the top of the image. The Cone Nebula’s reddish veil is produced by dust and glowing hydrogen gas.
∞ Source: apod.nasa.gov/apod/ap240204.html
The Bearclaw Nebula, Sh2-200 // Dionysus
An Eclipse Tree Image Credit & Copyright: Shawn Wyre
Explanation: Yes, but can your tree do this? If you look closely at the ground in the featured image, you will see many images of yesterday’s solar eclipse – created by a tree. Gaps between tree leaves act like pinhole lenses and each create a small image of the partially eclipsed Sun visible in the other direction. The image was taken in Burleson, Texas, USA. Yesterday, people across the Americas were treated to a partial eclipse of the Sun, when the Moon moves in front of part of the Sun. People in a narrow band of Earth were treated to an annular eclipse, also called a ring-of-fire eclipse, when the Moon becomes completely engulfed by the Sun and sunlight streams around all of the Moon’s edges. In answer to the lede question, your tree not only can do this, but will do it every time that a visible solar eclipse passes overhead. Next April 8, a deeper, total solar eclipse will move across North America.
∞ Source: apod.nasa.gov/apod/ap231015.html
The Seyfert galaxy NGC 5985 (on the left) contains an Active Galactic Nucleus (AGN).
AGN are so. Amazing.
In the dead center of the galaxy lies a supermassive black hole—and a large amount of other matter spiraling into it, caught in the gravitational well. As matter falls in, it accelerates to relativistic speeds, ripping apart until even atoms are split into plasma, and because plasma is not electrically neutral the metaphorical whirlwind of it generates an extremely strong electromagnetic field.
That field blasts matter away from the black hole in jets. These can be truly enormous. A single jet emanating from the black hole in the monstrous elliptical galaxy M87 is roughly ten times the length of our entire Milky Way Galaxy.
Seyfert galaxies are calmer than that, but the mechanism is the same. Bright, powerful AGN tend to be found in galaxies further from our own, while Seyferts dominate the AGN population in our local universe.
At BSU, we've imaged Markarian 421, a type of AGN called a blazar, so-named because the jet is aimed almost directly toward Earth.: "blazing" bright. We're in the process of studying our data, but the eventual goal is to determine limits for the mass of the black hole powering it. The student who spearheaded that research is now pursuing a Ph.D. at Purdue University!
Three Galaxies in Draco Image Credit & Copyright: David Vernet , Jean-François Bax , Serge Brunier, OCA/C2PU
Explanation: This tantalizing trio of galaxies sometimes called the Draco Group, is located in the northern constellation of (you guessed it) Draco, the Dragon. From left to right are face-on spiral NGC 5985, elliptical galaxy NGC 5982, and edge-on spiral NGC 5981, all found within this single telescopic field of view that spans a little more than the width of the full moon. While the group is far too small to be a galaxy cluster, and has not been catalogued as a compact galaxy group, the three galaxies all do lie roughly 100 million light-years from planet Earth. Not as well known as other tight groupings of galaxies, the contrast in visual appearance still makes this triplet an attractive subject for astroimagers. On close examination with spectrographs, the bright core of striking spiral NGC 5985 shows prominent emission in specific wavelengths of light, prompting astronomers to classify it as a Seyfert, a type of active galaxy. This impressively deep exposure hints at a faint dim halo along with sharp-edged shells surrounding elliptical NGC 5982, evidence of past galactic mergers. It also reveals many even more distant background galaxies.
∞ Source: apod.nasa.gov/apod/ap230701.html
The Dolphin Head Nebula (Sh2-308, right) and Sh2-303 (left) // Jim Thommes
Happy Halloween, everyone!
LDN 43: The Cosmic Bat Nebula Credit & Copyright: Mark Hanson and Mike Selby; Text: Michelle Thaller (NASA’s GSFC)
Explanation: What is the most spook-tacular nebula in the galaxy? One contender is LDN 43, which bears an astonishing resemblance to a vast cosmic bat flying amongst the stars on a dark Halloween night. Located about 1400 light years away in the constellation Ophiuchus, this molecular cloud is dense enough to block light not only from background stars, but from wisps of gas lit up by the nearby reflection nebula LBN 7. Far from being a harbinger of death, this 12-light year-long filament of gas and dust is actually a stellar nursery. Glowing with eerie light, the bat is lit up from inside by dense gaseous knots that have just formed young stars.
∞ Source: apod.nasa.gov/apod/ap241027.html
Wed. Nov. 8 - Observatory closed due to cloud cover. We'll try again next week.
The Hidden Galaxy, IC 342 // Ondřej Pešák
NASA's Perseverance rover has been collecting rock samples on Mars for 4 years now, and already there are some exciting finds! Check out the article here:
STEM Education, Astrophysics Research, Astrophotography, and Outreach located at 24 Park Ave., Bridgewater MA. You'll find us on the two outdoor balconies on the 5th floor, and you'll find our official website here: https://www.bridgew.edu/center/case/observatory .
150 posts