It could be that most of The Demand for a Cure for Autism comes from Neurotypicals. Answer by Zem Jones:
To "cure" me would be to change the person I am into someone I don't recognise. To "cure" some of the issues caused by my autism, such as my heightened anxiety, or hyperacusis, or my bowel problems, would be a blessed relief. People who want a cure for autism do not understand what needs curing and generally they must be people who don't know autism from the inside, or people who have been taught that it is autism that is the whole problem when it is probably a sensory difference or comorbid condition or combination of them that causes the discomfort and distress they see on the outside. I have a friend who has a child with Kanner's autism. He also has epilepsy. She tells me that when his epilepsy is under control he thrives as if his presentation was more like Asperger's rather than Kanner's but she always knows when a big fit is coming because he regresses into classic autistic behaviours for days beforehand. To me this says the autism is not the problem for him and I suspect the same is true for most children diagnosed with classic autism - if they could tell us what the problem really is and we could cure that then how much better would their lives be? I think people who want to cure the autism itself don't even know what autism really is.
Could the demand for a cure to autism be coming exclusively from neurotypical parents given the existence of advocates against a cure who...
Nice Cars to Look at.
LA Auto Show 2015
CNET Car Tech brings you the latest news from the 2015 LA Auto Show with tons of galleries and the latest unveilings from all the major car companies.
I sure can't wait to see what New Astronomical Discoveries will be made with These New Super_Gigantic Observatories that should come online by The End of December 2022.
Mission to build world’s most advanced telescope reaches major milestone
With the signing last week of a “master agreement" for the Thirty Meter Telescope — destined to be the most advanced and powerful optical telescope in the world — the University of California and UCLA moved a step closer to peering deeper into the cosmos than ever before. Watch: Thirty Meter Telescope (Overview) or via Vimeo
The agreement, signed by UC President Mark Yudof and several international partners, formally outlines the telescope project’s goals, defines the terms of its construction and establishes its governance structure, design and financing.
Work on the Thirty Meter Telescope (TMT), named for its 30-meter primary mirror — three times the diameter of the largest existing telescopes — is scheduled to begin in April 2014 atop Hawaii’s dormant Mauna Kea volcano. The TMT’s scientific operations are slated to start in 2022.
UCLA researchers will play a significant role in the development and use of the TMT, which will enable astronomers to study stars and other objects throughout our solar system, the Milky Way and neighboring galaxies, and galaxies forming at the very edge of the observable universe, near the beginning of time.
The project is a collaboration among universities in the United States and institutions in Canada, China, India and Japan, with major funding provided by the Gordon and Betty Moore Foundation.
"UCLA is taking a lead role in defining the science for this monumental, international project," said Andrea Ghez, a professor of physics and astronomy who holds UCLA’s Lauren B. Leichtman and Arthur E. Levine Chair in Astrophysics.
Ghez, who has served on the TMT science advisory committee since its first meeting 13 years ago, described the master agreement as an important milestone for the UC system, UCLA and the field of astronomy.
"One reason why we want to build TMT is to delve into the most fundamental workings of our universe," she said. "It is truly amazing to think about what TMT will teach us about the universe."
Creating cutting-edge instruments for the TMT UCLA professor of astronomy James Larkin is one of those excited about the TMT’s potential. He is the principal investigator for the Infrared Imaging Spectrograph (IRIS), one of three scientific instruments that will be ready for use with the TMT when the telescope begins operation.
"IRIS is an imaging spectrograph that perhaps can best be described as a sophisticated camera that takes small images at 2,000 different wavelengths simultaneously," Larkin said. "Or it can be thought of as a spectrograph that takes 10,000 adjacent spectra over a rectangular area of the sky."
The instrument will be able to produce images three times sharper than what is currently achievable with the two powerful W.M. Keck telescopes on Mauna Kea and many times sharper than the Hubble Space Telescope, Larkin said. IRIS will image planets that are forming but are often too dim and red to be detected by smaller telescopes, and it will be the only one of the three TMT instruments to magnify images to the theoretical diffraction limit.
"Exploring the universe at this unprecedented resolution and sensitivity means we will be surprised by what we find," he said. "IRIS has a wide range of science objectives, ranging from chemical analysis of the surfaces of solar system moons like Titan and Europa, to following the evolution of galaxies over the past 13 billion years, to searching for the first stars in the very early universe."
With the most sensitive spectroscopy available anywhere in the near-infrared, IRIS will yield the first real understanding the physical nature of these early galaxies, a key goal of research in cosmology and astrophysics.
IRIS is a joint project involving more than 50 astronomers from the U.S., Canada, Japan and China, and many of the instrument’s most crucial components will be designed and built at UCLA’s Infrared Laboratory for Astrophysics, founded more than 20 years ago by Ian S. McLean, who is the lab’s director and a UCLA professor of physics and astronomy.
The TMT, McLean said, will enable astronomers to see not only much fainter objects but also to resolve them in much greater detail.
"Both of these attributes are crucial for almost all of the frontier areas of modern astrophysics, from studies of nearby exoplanetary systems to probing the most distant objects in the universe," he said. "The TMT is precisely the right kind of scientific tool to complement national facilities under development, such as the James Webb Space Telescope. We are all very excited that the TMT master agreement is signed."
In 1989, at the beginning of the era of the twin W.M. Keck telescopes — currently the world’s largest optical and infrared telescopes — UCLA set up its infrared astrophysics lab to develop state-of-the-science instruments for them. All four of the currently operational infrared cameras and spectrometers on the Keck telescopes were built entirely or in part at UCLA. McLean expects UCLA’s infrared lab to play a similar role with the TMT.
The concept of a telescope three times larger and with nine times more light-gathering power than the Keck telescopes was first envisaged nearly 15 years ago, and UCLA has played a major role in defining the type of instruments needed for such a telescope. IRIS, under Larkin’s leadership, is one example, McLean said. Another proposed TMT instrument, the Infrared Multi-Slit Spectrometer (IRMS), will be a near-replica of the successful MOSFIRE instrument that McLean delivered to the W.M. Keck Observatory in 2012. With the sharpest and most sensitive images ever taken in the near infrared, the TMT and IRIS will reveal the universe in new ways, exploring everything from dwarf planets at the orbit of Pluto to the most distant galaxies ever explored near the dawn of time, McLean said.
The twin 10-meter Keck telescopes have "attracted many distinguished faculty, trained students at all levels and served the people of California and the world with inspiring discoveries and technological leadership," said McLean. "The University of California will continue that tradition of leadership and excellence with its participation in the TMT project, and UCLA will play a key role through the development and exploitation of infrared spectroscopy and high-resolution imaging technology."
Solving the mysteries of black holes with the TMT UCLA’s Ghez, who leads the development of the Galactic Center project, said her research will be greatly enhanced by the Thirty Meter Telescope.
Ghez and her colleagues discovered a supermassive black hole at the center of the Milky Way that has a mass approximately 4 million times that of our sun. Such mysterious and intriguing black holes, which were predicted by Einstein’s theory of general relativity, provide remarkable laboratories for the study of physics in extreme environments.
The TMT, Ghez said, will identify and map the orbits of fainter stars close to our black hole, extending our knowledge of physics with a fundamental test of Einstein’s theory. Because stars in the vicinity of the black hole will be affected by the presence or absence of dark matter, their orbits will significantly constrain our current model of dark matter, which is central to our understanding of galaxy formation.
TMT will also extend our ability to measure accurate masses of black holes in more distant galaxies and in low-mass galaxies, likely revealing when and how black holes are “fed," Ghez said.
By revealing details about resolved stellar populations in nearby galaxies, the TMT and IRIS will directly probe the formation of nearby stellar systems like our own Milky Way. Because it will be possible to measure the mass distributions of stars in a variety of new environments and in galaxies outside of the Milky Way, IRIS will help scientists learn whether stars form differently under different conditions.
In the distant universe, IRIS’s ability to image and study the internal workings of early galaxies will represent a major breakthrough in the study of galaxy formation during the known peak period of star formation.
The Thirty Meter Telescope is a collaboration of the University of California, the California Institute of Technology, the Association of Canadian Universities for Research in Astronomy, the National Astronomical Observatory of Japan, a consortium of Chinese institutions led by the National Astronomical Observatories of the Chinese Academy of Sciences, and institutions in India supported by India’s Department of Science and Technology.
In addition to President Yudof, signatories of the TMT master agreement are Donald E. Brooks, chair of the institutional council of Association of Canadian Universities for Research in Astronomy; Jean-Lou Chameau, president of the California Institute of Technology; Masahiko Hayashi, director general of the National Astronomical Observatory of Japan; P. Sreekumar, director of the Indian Institute of Astrophysics; and Jun Yan, director general of the National Astronomical Observatories of China.
Intel co-founder Gordon Moore and his wife, Betty, established the Gordon and Betty Moore Foundation to support bold ideas that create enduring impact in science, environmental conservation and patient care.
UCLA is California’s largest university, with an enrollment of more than 40,000 undergraduate and graduate students. The UCLA College of Letters and Science and the university’s 11 professional schools feature renowned faculty and offer 337 degree programs and majors. UCLA is a national and international leader in the breadth and quality of its academic, research, health care, cultural, continuing education and athletic programs. Six alumni and six faculty have been awarded the Nobel Prize.
via UCLA Newsroom
See on Scoop.it - Philosophy everywhere everywhen
Here is an outline of the argument for the urgent need to bring about a revolution in the aims and methods of academic inquiry, its whole character and structure, so that it takes up its proper task of promoting wisdom rather than just acquiring knowledge. Academia as it exists today is the product of two past great intellectual revolutions. The first is the scientific revolution of the 16th and 17th centuries, associated with Galileo, Kepler, Descartes, Boyle, Newton and many others, which in effect created modern science. A method was discovered for the progressive acquisition of knowledge, the famous empirical method of science. The second revolution is that of the Enlightenment, especially the French Enlightenment, in the 18th century. Voltaire, Diderot, Condorcet and the other philosophes had the profoundly important idea that it might be possible to learn from scientific progress how to achieve social progress towards an enlightened world. They did not just have the idea: they did everything they could to put the idea into practice in their lives. They fought dictatorial power, superstition, and injustice with weapons no more lethal than those of argument and wit. They gave their support to the virtues of tolerance, openness to doubt, readiness to learn from criticism and from experience. Courageously and energetically they laboured to promote reason and enlightenment in personal and social life.
See on ucl.ac.uk
Here are The Top_Ten Star_Wars Planets!
(via https://www.youtube.com/watch?v=SqHGZu0DBag)
http://larouchepac.com/jvideo/24562?size=640x360
Nuclear Fusion Propulsion for Interplanetary Travel.
Here’s some really good information on Autism_Acceptance to read.
Temple Grandin, professor of animal science at Colorado State, was diagnosed with Autism at the age of 2. Instead of letting this diagnosis limit her, she called upon her individual strengths and talents to find success in her life, and she is encouraging others to do the same.
Grandin recently spoke at the Harvard Graduate School of Education, where she discussed her activism in connecting Autistic individuals with higher education or careers. Grandin stresses that everyone, including employers, should focus on the unique characteristics and strengths of each person with ASD, and not their perceived limitations. According to Grandin, “There is too much emphasis placed on the deficit, and not enough on the strength”, she continues, “I’m seeing a lot of getting completely hung up on their Autism, caught up in a handicapped mentality”.
Temple Grandin (photo credit: Melanie Rieders)
Autistic children often have the ability to process material visually, as well as the ability to have an incredible focus on subjects of their interest. “Kids on the spectrum tend to get fixated on the things they like,” Grandin states, “so you need to use those fixations to teach kids different subjects.” For example, if a child has a fixation on airplanes, the teacher should incorporate planes in the teaching matter for physics, engineering, math, or even history.
Lastly, Grandin stated that there should be a stronger focus on the transition from childhood to one’s teenage years. In order to prepare them for adulthood, children should be given responsibilities and tasks. A strong foundation needs to be made in order for the child to potentially handle the responsibilities of employment at an older age.
As today marks the start of National Autism Awareness Month, it is important to realize that Autistic individuals need guidance and support in order to accomplish their goals and find confidence in themselves. Mentors are an essential part of the learning process for Autistic children. They can challenge children to learn things out of their comfort zone, while providing the patience and support that the child needs.
As Autism Awareness month continues, ICare4Autism will be sharing inspiring stories, recent news, and significant research findings about Autism. Additionally, we will be highlighting several self-advocates, who despite their diagnosis, have showcased their strengths and incredible gifts. We will also be distinguishing the eye-opening truth from the misconceptions about Autism that are often talked about or misrepresented in pop culture. We are looking forward to using this month as an incredible opportunity to spread awareness about Autism!
The ICare4Autism International Conference will be discussing the Global Autism Workforce Initiative on June 30th in NYC. An esteemed roster of speakers will be discussing the importance of implementing programs that incorporate Autistic individuals in the workplace. For tickets, please click here
Nearby Exoplanet is 'excellent' target in The Search for Life.
NASA's Juno_Mission reaches Jupiter on The 4th of July!
http://www.sci-news.com/space/juno-nears-jupiter-03994.html
On the evening of July 4, Juno — a solar-powered spacecraft the size of a basketball court — will fire its main engine for 35 minutes, placing it into a polar orbit around Jupiter
During the flybys, the spacecraft will probe beneath the obscuring cloud cover of the Solar System’s largest planet and study its auroras to learn more about the planet’s origins, structure, atmosphere and massive magnetosphere.
A series of 37 planned close approaches during the mission will eclipse the previous record for Jupiter set in 1974 by NASA’s Pioneer 11 spacecraft of 27,000 miles (43,000 km).
http://www.newsweek.com/2016/06/24/3d-printing-makerbot-stratasys-469704.html
The Age of 3D_Printing has indeed finally begun!
https://phys.org/news/2018-06-laser-technology-success-particle.html